簡易檢索 / 詳目顯示

研究生: 黃韋翔
Huang, Wei-Hsiang
論文名稱: 具微型複合天線之積體化鈮酸鋰光電電磁場感測器
Integrated LiNbO3 EO Electromagnetic Field Sensor with Micro Multi-antenna
指導教授: 許進恭
Sheu, Jinn-Kong
李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 電磁場感測器鈮酸鋰波導
外文關鍵詞: waveguides, LiNbO3, Field sensor
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究為將多個微型天線進行耦合,並依此製作成積體化電磁場感測器元件,產生多重頻率的疊加現象,可用來做為寬頻或多頻率響應電場與磁場的感測器。並對設計的天線進行電磁場數值模擬,以模擬假設所需的響應頻率,以此條件進行天線圖形光罩的製作。
    元件晶片採用Z切方向的鈮酸鋰,以熱退火製作鈦擴散光波導的馬式調制器,在緩衝層後,疊上電極天線完成多偶極電磁場感測器元件。另外一元件則是在完成調制電極後,接續成長隔絕層與天線,得到多重環矩形電磁感測器元件。之後再經過良好的封裝完成感測器,並使用標準量測環境,驗證模擬與實作的吻合度,並對結果做分析。

    The purpose of my research is to fabricate multi-antenna which is coupling several micro antennas. The EM field sensor with multi-antenna has the appearance of superposition of different frequencies. It can be use to fabricate wideband or multi-frequencies sensor. We design antenna by the results of simulation, and make its mask.
    We select z-cut LiNbO3 wafer to fabricate waveguides by Ti-diffusion. After deposited buffer layer, plus electrodes and antenna. The device have be down. Another device need to deposit insulate layer after electrodes, and fabricate antenna finally. Package is necessary to do before measurement. Then we must to test and verify the frequency spectrum results between simulation and fact.

    第一章 緒論 1 第二章 原理 2-1 鈮酸鋰的電光效應 4 2-2 鈮酸鋰光波導的鈦擴散 8 2-3 馬式調制器 (Mach-Zehnder modulator) 13 2-4 行波式電極 15 第三章 天線電腦數值模擬與光罩製作 3-1 偶極天線模擬 16 3-2 環矩形天線模擬 20 3-3 光罩製作 23 第四章 元件製程 4-1 多重偶極電磁場感測器 25 4-2 多重環矩形電磁場感測器 36 第五章 封裝 5-1 晶片的切割與研磨 40 5-2 光纖接頭製作 43 5-3 光纖波導耦合與固化 45 第六章 量測 6-1 量測系統 49 6-2 多重偶極電磁場感測器元件量測 53 6-3 多重環矩形電磁場感測器元件量測 58 6-4 二維電磁場感測系統量測 64 第七章 結論 68 參考文獻 70

    [1] P. S. Cross, R. A. Baumgatner, and B. H. Kolner, “Microwave integrated Optical modulator,” Appl. Phys.Lett., vol. 44, p. 486, 1984.
    [2] R.A. Beaker, “Traveling-wave electro-optic modulator with maximum bandwidth-length product,” Appl. Phys. Lett., vol. 43, p. 998, 1984.
    [3] 李俊奇“雙重擴散式波導管之研究”中央大學博士論文 (1994).
    [4] 白富成 “鈮酸鋰高速調制器之製作與封裝”中央大學碩士論文 (1993).
    [5] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refraction index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Tech., vol. 5, pp. 700-703 (1987).
    [6] K. Kobota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide” IEEE J. Quantum Electron, vol. 16, pp. 754-756, 1980.
    [7] G. E. Betts, and W. S. C. Chang, “Crossing-channel waveguide electrooptic modulators,” IEEE J. Quantum Electron, vol. 22, pp. 1027-1029, 1986.
    [8] M. N. Armenise, ”Fabrication techniques of lithum niobate waveguide, ”IEEE Proc., vol.135, pp. 85-87, 1988
    [9] F. Auracher, “Design tradeoffs for high-speed directional coupler modulators with Δβ-reversal in LiNbO3,” J. Opt. Commun, vol. 5, pp. 2-4, 1984.
    [10] M. Masuda, and J. Koyama, “Effects of a buffer layer on TM modes in a metal-clad optical waveguide using Ti-diffused LiNbO3 C-plate,” Appl. Opt., vol.16, pp. 2294-2296, 1977.
    [11] K. Sreenivas, T. S. Rao, A. Mansingh, and S. Chandra, “Preparation and characterization of RF Sputtered indium tin oxide films,” J. Appl. Phys., vol. 57, p. 384, 1985.
    [12] 黃振庭”緩衝層影響鈮酸鋰光波導元件傳播損耗之研究” 中央大學碩士論文(1997).
    [13] E. Voges, and A. Neyer, “Integrated-Optic devices on LiNbO3 for optical communication,” J. Lightwave Tech., vol.5, p. 1229, 1987.
    [14] H. Nagata, and N. Mitsugi, “Mechanical Reliability of LiNbO3 optical modulators hermetically sealed in stainless steel packages,” Opt. Fiber Technol, vol. 2, pp. 216-224 (1996).
    [15] T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Intergrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technology, pp. 1497-1503 (1994).
    [16] N. Kuwabara, K. Tajima, T. Tanaka, and R. Kobayaashi, “Development and analysis of electric field sensor using optical modulator,” IEEE Trans Electromagnetic Compat 34, pp. 391-395 (1992)
    [17] Y. Tokano, H. Kobayashi, T. Miyakawa, Y. Houjyo, “A gigahertz micro optical electric field sensor,” 14th Int Zurich Symp on Electromagnetic Compatibility, No.25E4, pp. 127-130 (2001).
    [18] M. Takahashi, K. Nishikawam, K. I. Arai, R. Sato, “An optical wave guide sensor with a loop antenna element,” Int Symp EMC Europe, No. PD16, pp. 635-638 (2002).
    [19] H. Nagata, and N. Mitsugi, “Mechanical Reliability of LiNbO3 optical modulators hermetically sealed in stainless steel packages,” Opt. Fiber Technol., vol. 2, p. 216,1996.
    [20] S. Takahashi, T. Miyakawa, K. Nishikawa, K. Arari, “Near magneticfield distribution measurement by the loop coil optical waveguide probe,” IEICE Society Conf, No. B-4-73, pp. 440-443 (2003).
    [21] C. Carobbi, L. Millanta, L. Chiosi, “ The high-frequency behavior of the shield in the magnetic field probes,” IEEE Int Sym EMC, pp. 35-40 (2000).
    [22] T. Miyakawa, K. Nishikawa, and K. Nishida, “An optical-waveguide type Magnetic field probe with a loop antenna element,” Electronics and Communications in Japan, Part 2, Vol. 88, No. 4, pp. 18-26 (2005).
    [23] T. Mitakawa, K. Nishikawa, K. Arai, and R. Sato, “An optical waveguide sensor with a loop antenna element,” Int Symp EMC Europe, No. PD16, pp. 635-638 (2002).

    下載圖示 校內:2010-06-30公開
    校外:2010-06-30公開
    QR CODE