簡易檢索 / 詳目顯示

研究生: 蘇育全
Su, Yu-Chuan
論文名稱: 智慧型預測系統設計與實作
Intelligent Prognostics System Design and Implementation
指導教授: 鄭芳田
Cheng, Fan-Tien
洪敏雄
Hung, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 製造工程研究所
Institute of Manufacturing Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 86
中文關鍵詞: 品質預測設備工程系統通用型嵌入式裝置預測保養虛擬量測
外文關鍵詞: quality prognostics, virtual metrology, predictive maintenance, Equipment engineering system (EES), generic embedded device (GED)
相關次數: 點閱:157下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一應用於半導體與TFT-LCD廠生產製造之智慧型預測保養系統(Intelligent Prognostics System, IPS),該預測保養系統包含數個通用型嵌入式裝置(Generic Embedded Device, GED)與遠端主機。其中,GED可以容易地嵌入在不同種類的設備之中,以擷取設備工程資料並支援半導體產業設備工程能力所需之Interface A之需求規範。再者,GED包含一可插入式應用程式介面,可提供各種可插入式與客製化的應用需求。應用程式則可以被分散且置於GED之中,以減少工廠網路負載並提昇設備可靠度與製程品質。本論文同時也發展了預防保養系統(Predictive Maintenance System, PMS)與品質預測系統(Quality Prognostics System, QPS)兩套可插入式應用系統,其中,PMS用來偵測設備異常,QPS則是用來預測設備製程品質。論文中並分別以一TFT-LCD廠的輸送設備與一濺鍍製程設備做為範例,說明如何將PMS與QPS整合到IPS之中,並展現IPS的適用性、可重組性與效能。

    This dissertation proposes an intelligent prognostics system (IPS) for semiconductor and TFT-LCD manufacturing. The IPS comprises several generic embedded devices (GEDs) and remote clients. The GED can be easily embedded into various types of equipment to acquire equipment engineering data and meet the specification requirements of Interface A for supporting semiconductor industry equipment engineering capabilities. Furthermore, the GED has an open-standard application interface offering any pluggable and customized intelligent applications. With this feature, the intelligent applications can be distributed and localized releasing the factory network burden and enhancing equipment reliability and processing quality. This dissertation also develops two typical pluggable applications: the predictive maintenance scheme (PMS) for detecting equipment faults and the quality prognostics scheme (QPS) for conjecturing equipment-processing quality. Integrating the PMS into the IPS and the QPS into the IPS are respectively accomplished using the conveyor equipment and the sputtering equipment in a TFT-LCD factory. These two illustrative examples clearly demonstrate that IPS is versatile, configurable, and effective.

    CONTENTS 摘要 I ABSTRACT II 致謝 III ACKNOWLEDGEMENTS IV FIGURE CONTENTS VIII TABLE CONTENTS X CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Purpose of this Dissertation 2 1.3 Organization 4 CHAPTER 2 DEVELOPMENT OF IPS ARCHITECTURE 5 2.1 Survey of Previous Work 5 2.2 IPS Architecture 9 2.3 Remote Client 10 2.4 Generic Embedded Device (GED) 10 2.4.1 GED Functional Requirements 10 2.4.2 GED Modules 11 2.4.3 Design Details of the GED Modules 13 2.4.4 GED Graphic User Interface 16 2.5 Pluggable Application Module (PAM) 18 2.6 Applying IPS Architecture to Serve as EES Framework 21 CHAPTER 3 PMS DESIGN AND IMPLEMENTATION CONSIDERATIONS 24 3.1 Introduction 24 3.2 Predictive Maintenance Scheme (PMS) 25 3.3 Integrating PMS into IPS 28 3.4 PMS Graphic User Interface Design 30 3.4.1 PMS GUI Functions 31 3.4.2 Test Results of PMS 35 CHAPTER 4 QPS DESIGN AND IMPLEMENTATION CONSIDERATIONS 36 4.1 Introduction 36 4.2 Architecture Design of QPS 40 4.2.1 Conjecture Model 40 4.2.2 Prediction Model 42 4.2.3 Self-searching and Auto-adjusting Mechanisms 42 4.2.4 User Selection-and-Setup Interface 43 4.2.5 Reliance Index 43 4.3 Illustrative Example 49 4.3.1 Construction of Conjecture Model 51 4.3.2 Construction of Prediction Model 54 4.3.3 Evaluation of Conjecture and Prediction Accuracy 56 4.3.4 Operating Procedure of Auto-Adjusting Mechanism 56 4.3.5 Operating Procedure of Auto-Adjusting Mechanism with Reliance Index 58 4.3.6 Integrating QPS into IPS 59 4.4 Test Results of QPS 61 4.4.1 Conjecture Results 61 4.4.2 Prediction Results 62 4.4.3 Test Results with Auto-Adjusting 65 4.4.4 Test Results of Reliance Index 65 CHAPTER 5 IPS INTEGRATION AND PERFORMANCE TEST 67 5.1 XML Performance Comparison 68 5.2 Considerations of Message Transfer Time and Factory Network Burden 69 CHAPTER 6 CONCLUSION AND FUTURE WORK 72 6.1 Conclusion 72 6.2 Future Work 73 6.2.1 VMS Development 73 6.2.2 EES Development 75 REFERENCES 79

    REFERENCES

    [1] Web site of Center for International SEMATECH (ISMT). [Online]. Available: http://www.sematech.org/index.htm
    [2] “e-Diagnostics Guidebook”, ver. 2.1, International SEMATECH, Jul., 2005. [Online]. Available: http://www.sematech.org/docubase/abstracts/4153deng.htm
    [3] “Equipment Engineering Capabilities (EEC) guidelines” ver. 2.5, International SEMATECH, Jul. 2002. [Online]. Available: http://www.sematech.org/ismi/emanufacturing/eec.htm
    [4] T. Gow, “Enhanced Fab Performance through Interface A,” in Proc. IMST e-DIAGNOSTICS and EEC Workshop, Jul. 18, 2003. [Online]. Available: http://www.ismi.sematech.org/emanufacturing/meetings/20030718/index.htm
    [5] T. Guckert, “Implementing Interface A,” in Proc. IMST e-Manufacturing Standards Workshop and SEMI Software Symposium, Mar. 18, 2003. [Online]. Available: http://www.ismi.sematech.org/emanufacturing/meetings/20030318/index.htm
    [6] CIMPortal Software for the Interface A SEMI Standards, [Online]. Available: http://www.cimetrix.com/cimportal.cfm
    [7] AutoFAB for the EES Platform, Lumax International Crop., Ltd. [Online]. Available: http://www.elumax.com/en/p4-1.asp
    [8] Web site of Center for Intelligent Maintenance Systems. [Online]. Available: http://www.imscenter.net/
    [9] R. Jones, “Computer Aided Maintenance Management System,” International Journal of Maintenance & Asset Management, vol. 9, no. 2, 1994.
    [10] B. R. Rau and M. S. Schlansker, “Embedded computing: New directions in architecture and automation,” in Proc. International Conference on High Performance Computing, LNCS vol. 1970/2000, pp. 225-244, Dec. 2000.
    [11] R. L. Nord, “Meeting the product line goals for an embedded real-time system,” in Proc. International Workshop on Software Architectures for Product Families, LNCS vol. 1951/2000, pp. 19-29, March 15-17, 2000.
    [12] Y.-C. Su, M.-H. Hung, F.-T. Cheng, and Y.-T. Chen, “A processing quality prognostics scheme for plasma sputtering in TFT-LCD manufacturing,” IEEE Transactions on Semiconductor Manufacturing, vol. 19, no. 2, pp. 183-194, May 2006.
    [13] A. Chen and R. S. Guo, “Age-based double EWMA controller and its application on CMP process,” IEEE Transactions on Semiconductor Manufacturing, vol. 14, no. 1, pp. 11-19, Feb. 2001.
    [14] V. M. Torres, “Modeling the influence of arsenic autodoping on the sheet resistance of epitaxial silicon films and its application to statistical process control (SPC),” IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 1, pp. 68-75, Feb. 2003.
    [15] T. H. Smith and D. S. Boning, J. Stefani and S. W. Bulter, “Run by run advanced process control of metal sputter deposition,” IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 2, pp. 276-284, May 1998.
    [16] J. A. Stefani, S. Poarch, S. Saxena, and P. K. Mozumder, “Advanced process control of a CVD tungsten reactor,” IEEE Transactions on Semiconductor Manufacturing, vol. 9, no. 3, pp. 366-383, Aug. 1996.
    [17] B. Rubow, “The Standard Pieces of SEMI’s Interface A”, Semiconductor International, Jul. 2005. [Online]. Available: http://www.reed-electronics.com/semiconductor/article/CA621798
    [18] J. Chang and F.-T. Cheng, "Application Development of Virtual Metrology in Semiconductor Industry," in Proc. of 31th Annual Conference of the IEEE Industrial Electronics Society (IECON 2005), Raleigh, North Carolina, U.S.A., pp. 124-129, Nov. 2005.
    [19] SEMI PR8-0703, Provisional specification for equipment data acquisition solutions, Jul. 2004.
    [20] SEMI E120-1104, Specification for the common equipment model (CEM), 2004.
    [21] SEMI E125-0305, Specification for equipment self description (ESD), 2005.
    [22] SEMI E132-0305, Specification for equipment client authentication and authorization (A&A), 2005.
    [23] SEMI E134-0305, Specification for data collection management (DCM), 2005.
    [24] H. C. Zhang and S. H. Huang, “Applications of neural networks in manufacturing,” International Journal of Production Research, vol. 33, no. 3, pp.705-728, 1995.
    [25] C. T Lin, C.S. George Lee, Neural Fuzzy Systems, Upper Saddle River, NJ: Prentice Hall, 1996.
    [26] S. A. DeLurgio, Forecasting Principles and Applications, New York: McGraw-Hill, 1998.
    [27] SEMI E128-0703, Provisional specification for XML message structures, 2004.
    [28] Web site of the CenterPoint. [Online]. Available: http://www.cpointc.com/index.html
    [29] “XML performance analysis lessons learned and recommendations – Set I,” ver. 2.1, CenterPoint, Oct. 2004.
    [30] R. L. Ott and M. Longnecker, “An Introduction to Statistical Methods and Data Analysis,” Pacific Grove, CA: Borrks/Cole, 2001.
    [31] Web site of the gSOAP. [Online]. Available: http://www.cs.fsu.edu/~engelen/soap.html
    [32] R. Mukaro and X. F. Carelse, “A microcontroller-based data acquisition system for solar radiation and environmental monitoring,” IEEE Transactions on Instrument and Measurement, vol. 48, no. 6, pp. 1232-1238, Dec. 1999.
    [33] B. R. Kumar, K. Sridharan, and K. Srinivasan, “The design and development of a web-based data acquisition system,” IEEE Transactions on Instrument and Measurement, vol. 51, no. 2, pp. 427-432, Jun. 2002.
    [34] R. Lombardi, G. Coldani, G. Danese, R. Gandolfi, and F. Leporati, “Data acquisition system for measurements in free moving subjects and its applications,” IEEE Transactions on Instrument and Measurement, vol. 52, no. 3, pp. 878-884, Jun. 2003.
    [35] M. Benghanem and A. Maafi, “Data acquisition system for photovoltaic systems performance monitoring,” IEEE Transactions on Instrument and Measurement, vol. 47, no. 1, pp. 30-33, Feb. 1998.
    [36] C. D. Himmel and G. S. May, “Advantages of plasma etch modeling using neural networks over statistical techniques,” IEEE Transactions on Semiconductor Manufacturing, vol. 6, no. 2, pp. 103-111, May 1993.
    [37] P. E. Riley and D. A. Hanson, “Study of etch rate characteristics of SF6/He plasmas by response-surface methodology: Effects of interelectrode spacing,” IEEE Transactions on Semiconductor Manufacturing, vol. 2, no. 4, pp. 178-182, Nov. 1989.
    [38] G. S. May, J. Huang, and C. J. Spanos, “Statistical experimental design in plasma etch modeling,” IEEE Transactions on Semiconductor Manufacturing, vol. 4, no. 2, pp. 83-98, May 1991.
    [39] B. Kim and G. S. May, “An optimal neural network process model for plasma etching,” IEEE Transactions on Semiconductor Manufacturing, vol. 7, no. 1, pp. 12-21, Feb. 1994.
    [40] D. B. Fogel, “An information criterion for optimal neural network selection,” IEEE Transactions on Neural Networks, vol. 2, no. 5, pp. 490-497, Sep. 1991.
    [41] S. Y. Kung and J. N. Hwang, “An algebraic projection analysis for optimal hidden units size and learning rates in back-propagation learning,” in Proceedings of the IEEE International Conference on Artificial Neural Networks, pp. 363-370, Jul. 1988.
    [42] Z. Nami, O. Misman, A. Erbil, and G. S. May, “Semi-empirical neural network modeling of metal-organic chemical vapor deposition,” IEEE Transactions on Semiconductor Manufacturing, vol. 10, no. 2, pp. 288-294, May 1997.
    [43] S. Hong, G. S. May, and D. Park, “Neural network modeling of reactive ion etching using optical emission spectroscopy data,” IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 4, pp. 598-608, Nov. 2003.
    [44] D. A. White, D. Boning, S. Butler, and G, Barna, “Spatial characterization of wafer state using principle component analysis of optical emission spectra,” IEEE Transactions on Semiconductor Manufacturing, vol. 10, no. 1, pp. 51-61, Feb. 1997.
    [45] I. T. Jolliffe, Principal Component Analysis, New York: Springer, 2002.
    [46] D. Stokes and G. S. May, “Real-time control of reactive ion etching using neural networks,” IEEE Transactions on Semiconductor Manufacturing, vol. 13, no. 4, pp. 469-480, Nov. 2000.
    [47] J. Yi, Y. Sheng, and C. Xu, “Neural network based uniformity profile control of linear chemical-mechanical planarization,” IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 4, pp. 609-620, Nov. 2003.
    [48] H. C. Zhang, and S. H. Huang, “Applications of neural networks in manufacturing,” International Journal of Production Research, vol. 33, no. 3, pp.705-728, 1995.
    [49] C. T. Lin and C. S. G. Lee, “Neural Fuzzy Systems,” Upper Saddle River, NJ: Prentice-Hall, 1996.
    [50] F. M. Ham and I. Kostanic, “Principles of Neurocomputing for Science and Engineering,” New York: McGraw-Hill, 2001.
    [51] S. T. Tseng, A. B. Yeh, F. Tsung, and Y. Y. Chan, “A study of variable EWMA controller,” IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 4, pp. 633-643, Nov. 2003.
    [52] N. S. Patel, and S. T. Jenkins, “Adaptive optimization of run-to-run controllers: the EWMA example,” IEEE Transactions on Semiconductor Manufacturing, vol. 13, no. 1, pp. 97-107, Feb. 2000.
    [53] S. A. DeLurgio, Forecasting Principles and Applications, New York: McGraw-Hill, 1998.
    [54] M. Asada, “Wafer yield prediction by the Mahalanobis-Taguchi system,” IEEE International Workshop on Statistical Methodology, pp. 25-28, Jun. 2001.
    [55] G. Taguchi, S. Chowdhury, and Y. Wu, The Mahalanobis-Taguchi System, New York: McGraw-Hill, 2001.
    [56] S. Chatterjee, A. S. Hadi, and B. Price, Regression Analysis by Example, New York: Wiley, 2000.
    [57] Web site of SiAutomation. [Online]. Available: http://www.siautomation.com/

    下載圖示 校內:2008-06-13公開
    校外:2008-06-13公開
    QR CODE