簡易檢索 / 詳目顯示

研究生: 李宜芳
Li, I-Fang
論文名稱: 發展磁振造影顯影劑與螢光奈米材料
Development of MR imaging and Fluorescent nanomaterials
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 磁振造影硒化鎘螢光顯影二氧化矽空球
外文關鍵詞: Gadolinium, MR contrast agents, CdSe, fluorescence, hollow silica sphere
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來許多研究著重在製備多功能無機材料奈米,並應用在體外(in vitro)或體內(in vivo)生醫方面。無侵入性的磁振造影技術被認定對人體無傷害性,並可提供解剖學上的高對比解析的資訊。近期的磁振顯影劑主要可歸類成兩類:以順磁性種類為主之T1正向顯影劑,例如釓離子(Gd3+)配位化合物;另外是以超順磁氧化鐵粒子為主之T2負向顯影劑。

    第一部份,我們探討碳羥基碳酸釓(Gd(CO3)OH)奈米粒子和其相關之氧化釓(Gd2O3)的合成和應用。我們的研究發現碳酸釓球型粒子擁有多方面的功能,除了可當磁振顯影劑,並且可以粒子作為模板製備空球和混雜複合材料。我們的研究可分類為三個主題:(1)我們是第一個研究報導碳酸釓膠體粒子,其合成方式是利用含結晶水之氯化釓鹽類和尿素在低溫下迴流過程中產生。藉由高解析同步加速器X射線粉末繞射詳細分析得到精確的晶體結構,顯示為具有斜方晶系對稱(orthorhombic symmetry)結晶性的碳酸氧化釓;(2)這些製備出來的含釓的粒子可同時作為T1正向和T2負向雙顯影劑。另外,由生物分佈研究指出粒子可在血管中循環,並可能在組織中被代謝排出組織;(3)碳酸氧化釓球型粒子表面容易修飾,具有潛力作為多模態(multimodal)粒子,我們以此碳酸釓球型粒子作為理想的模板,來製備中空的矽膠球殼和外接氧化鐵的中空矽膠球殼之混雜複合材料。
    第二部份,我們合成親水性的掺釓之硒化鎘(CdSe:Gd NPs)量子點,隨著反應時間增加,由30秒到5分鐘,吸收與放光皆產生紅位移,粒徑6.3 nm的量子點
    具有高r1值為76.7 s-1mM-1,同時具有螢光顯影探針和磁振顯影劑效果。

    第三部分,以碳酸氧化釓奈米粒子此硬性材質的模板合成二氧化矽空球,經由高溫鍛燒後二氧化矽空球結構中產生有機發光產物,在給予激發能量後會產生螢光,其中以丙胺三乙氧基矽烷(APTES) 佔總矽氧烷類前趨物為6 mol%之二氧化矽空球,並以升溫速率為 2 ℃/min條件下鍛燒300 ℃並持溫1 hr具有最好的量子產率。

    Recently, research has been centred on the fabrication of the multifunctional inorganic-based particulate agents for in vitro and in vivo biomedical applications. The non-invasive MRI, recognized as harmless to the body, provides anatomical details in diagnosis and offers highly resolved contrast. Currently, MR contrast agents are categorized into T1-positive agents of paramagnetic species, such as gadolinium (Gd3+)-based complexes and T2-negative agents of superparamagnetic iron oxide particles.
    In part I, Herein, we report the synthesis and applications of Gd(CO3)OH colloidal particles and their corresponding Gd2O3. The Gd(CO3)OH spherical particles exhibited multifunctional capability by the observation of showing MR contrast effect and developing as multimodal materials. Our findings can be categorized to three main themes: (i) We wish to present the first report of the Gd(CO3)OH colloidal particles, which readily synthesized with GdCl3•6H2O and urea by reflux process under a low temperature. With the detailed characterization of the high resolution synchrotron powder X-ray diffraction, crystal structural information has shown the exact crystal packing with orthorhombic symmetry for crystalline Gd(CO3)OH sample.; (ii) These newly prepared Gd-containg particles showed the effective bimodal T1-positive and T2-negative contrast agents. The biodistribution studies indicted that the particles could circulate in the vessels and possibly metabolically excreted from organs after 12 h.; (iii) The Gd(CO3)OH spherical particles potentially acted as multimodal particles because of readily surface engineering, which was normally limited in the inorganic Gd-related particles. We thus demonstrated that the Gd(CO3)OH spheres as an ideal template to form hollow silica nanoshells and hollow silica@Fe3O4 hybrid particles, which was reported for the first time.
    In part II, we report the first example of water-soluble Gd doped CdSe nanoparticles (CdSe:Gd NPs) with dual modality in optical and MR imaging functionalities. The resulting CdSe:Gd NPs were 6.3 nm in diameter and exhibited high r1 relaxivity, 76.7 s-1mM-1, giving the largest relaxivity among the reported Gd-related nanoparticles. CdSe:Gd NPs also served as fluorescence probes in cellular imaging.
    In part III, Gd(CO3)OH nanoparticles as a hard template was used to synthesize hollow silica nanospheres. Calcination of hollow silica nanosphere created fluorescent organic compound in the structure which can irradiated fluorescence. The results showed mol % of APTES/silane precursor = 6 % of hollow silica nanospheres were dried and subsequently calcined in air at 300 ℃ for 1 hr at heating rate 2 ℃/min condition provided best quantum yield.

    目錄 第一章 緒論 1 1.1 奈米材料之發展介紹……………………………………………….…………… .. …1 1.2奈米材料的特性…………………………………………………………………..……1 1.2.1量子侷限效應 (quantum confinement ffect)……………………….…………2 1.2.2 小尺寸效應(small scale effect) ……………………………………… ………3 1.2.3 表面積效應(Surface Effect)……………………………………………………4 1.2.4 奈米材料之表面穩定性………………………………………………………4 1.2.5 奈米粒子的表面修飾與衍生化………………………………………………5 1.3奈米粒子的光學性質………………………………………………………………… 6 1.3.1 重金屬奈米粒之表面電漿共振 ………………………………………….… 6 1.3.2 具螢光特性的量子點(quantum dots)…………………………………………7 1.4硒化鎘量子點之探討…………………………………………………………..…… 10 1.4.1 簡介……………………………………………………………………...……10 1.4.2量子點之合成…………………………………………………………………11 1.4.3親水化生醫應…………………………………………………………………12 1.5 磁共振造影技術……………………………………………………………..………14 1.5.1磁共振造影技術原理…………………………………………………………14 1.5.2 顯影劑…………………………………………………………………………17 1.6 奈米級為模板之合成及介紹……………………………………………...…………19 1.6.1核-殼材料之製備方法…………………………………………………………21 1.6.2 中空型奈米材料簡介…………………………………………………………22 1.6.3 二氧化矽空球簡介……………………………………………………………23 1.6.4 二氧化矽的光學性質…………………………………………………………24 1.7 鑑定儀器…………………………………………………………………….…..……26 第二章 羥基碳酸釓(Gd(CO3)OH)粒子和其相關之氧化釓: 合成並應用在核磁共振顯影劑與以粒子為模板製備空球和複合材料 28 2.1研究動機與目的………………………………………………………………………29 2.2 藥品…………………………………………………………………………..………30 2.3 實驗部份……………………………………………………………………..………30 2.3.1 合成羥基碳酸釓(Gd(CO3)OH)奈米球………………………………………30 2.3.2 反應時間對型態的影響…………………………………………..…………30 2.3.3 TGA分析和不同溫度鍛燒結果……………………………………………31 2.3.4 Vero cell細胞培養和細胞毒性測試………………………………..………31 2.3.5 材料在生物體內分佈實驗…………………………………………………31 2.3.6 磁振造影之體外顯影效果…………………………………………………32 2.3.7 磁振造影之體內顯影效果…………………………………………………32 2.3.8 羥基碳酸釓(Gd(CO3)OH)球形奈米粒子為模版之應用…………………32 2.4 實驗結果與討論…………………………………………………………..………33 2.4.1 羥基碳酸釓(Gd(CO3)OH)形態分析………………….………..…………33 2.4.2 羥基碳酸釓(Gd(CO3)OH)奈米球結構鑑定…………………..………….35 2.4.3 TGA 分析和不同溫度鍛燒結果…………………………………………40 2.4.4 鍛燒形成氧化釓(Gd2O3)奈米球…………………………………………42 2.4.5 測試生物毒性…………………………………………………….………42 2.4.6 磁共振造影之顯影效果……………………………………….…………44 2.4.7 磁共振造影之體內測試……………………………………….…………46 2.4.8 材料在體內停留時間………………………………………….…………46 2.4.9 Gd(CO3)OH為模版之應用………………………………………………48 2.4.10 結論………………………………………………………………………50 第三章 合成CdSe:Gd 奈米粒子並應用在光學顯影與磁振造影(MRI)51 3.1研究動機與目的…………………………………………………………………52 3.2 藥品…………………………………………………………………………..….52 3.3 實驗部份………………………………………………………………………....53 3.2.1 合成CdSe:Gd 量子點………………………………………………..…52 3.2.2 CdSe:Gd 量子點轉水相…………………………………………………54 3.2.3 分析Gd在CdSe:Gd 量子點中的比例…………………………………54 3.2.4 CdSe:Gd 量子點對細胞存活率…………………………………………55 3.2.5 CdSe:Gd 量子點在體外細胞磁振造影之分析…………………………55 3.4 實驗結果與討論…………………………………………………………..……56 3.4.1 合成CdSe:Gd 量子點…………………………………………………..56 3.4.2 鑑定分析CdSe:Gd 量子點……………………………………………..56 3.4.3 CdSe:Gd 量子點轉水相…………………………………………………59 3.4.4 CdSe:Gd 量子點在磁振造影之分析……………………………………58 3.4.5 CdSe:Gd 量子點對細胞存活率測試生物毒性…………………………62 3.4.6 結論 ………………………………………………….…………………64 第四章 製備中空螢光奈米球 65 4.1研究動機與目的………………………………………………………..….…...…66 4.2 藥品………………………………………………………………..……..………66 4.3實驗步驟……………………………………………………………..……………67 4.3.1實驗流程……………………………………………………..……………67 4.3.2 製備不同粒徑碳酸釓(Gd2O(CO3)2•H2O)奈米球…………..……….…67 4.3.3 製備碳酸釓奈米粒子/二氧化矽核殼材料…………………..……..……68 4.3.4製備二氧化矽中空奈米球…………………………………..……………68 4.3.5製備二氧化矽中空螢光奈米球……………………………..……………68 4.3.6製備不同APTES含量之二氧化矽中空螢光奈米球………..…….……69 4.4結果與討論…………………………………………………………..………..…69 4.4.1碳酸釓(Gd2O(CO3)2•H2O)奈米球粒徑的探討……………..…….……69 4.4.2 二氧化矽中空奈米球之探討………………………………..…….……72 4.4.3量子產率之計算………………………………………………..……..…73 4.4.4製備二氧化矽中空螢光奈米球………………………………..….….…73 4.4.5 BET……………………………………………………………..…..……79 4.4.6結論……………………………………………………………….…..…79 文獻……………………………………………………………………….….……81 附錄………………………………………………………………………..…….…89 自述…………………………………………………………..…..…….90 表目錄 表1.1 粒子的表面原子數與表面能量………………………………………….……… 4 表1.2 矽量子點之粒徑與能隙變化關係……………………………………….……… 9 表1.3 CdSe晶體架構與物理性質…………………………………………….……… 11 表1.4 為奈米核殼粒子的應用領域……………………………………………………. 21 表2.1 製備羥基碳酸釓(Gd(CO3)OH)微粒之實驗參數與結果………………………...35 表2.2含有Gd之奈米粒子在3T磁場MRI之弛緩率(relaxivity values)與文獻之比較46 表4-1 調配不同mol%APTES所需加入的反應物溶液的體積………………………. 69 表4.2 以6%APTES之二氧化矽中空奈米球在鍛燒溫度分別為250℃、300℃、350℃下之量子產率(QY%) ………………………………………………………………..74 表4.3 以6%APTES之二氧化矽中空奈米球在升溫速率分別為2℃/min、6℃/min、10℃/min下量子產率(QY%) ………………………………………………………74 表4.4 三種粒徑之6%之二氧化矽中空螢光奈米球量子產率……………………… 75 表4.5 以108.3 nm為核,掺不同莫耳比例APTES的中空二氧化矽之量子產率…76 表4.6 以172.5 nm為核,掺不同莫耳比例APTES的中空二氧化矽之量子產率…77 表4.7 以380.1 nm為核,掺不同莫耳比例APTES的中空二氧化矽之量子產率…77 表4.8 BET總整理…………………………………………………………………….. 79 圖目錄 圖1.1 不同維度尺寸材料的能階狀態密度與能量關係圖…………………………… 2 圖1.2 矽量子點的螢光光譜與顏色分佈………………………………………………9 圖1.3 各種半導體化合物之能隙與晶格常數之關係……………………………….. 10 圖1.4 量子點與生物分子的常見結合方式……………………………………………13 圖1.5 老鼠體施打不同螢光量子點圖…………………………………………………13 圖1.6 GdPO4奈米粒(PGP/dextran-K1) …………………………………………..……20 圖1.7 CdSe/ZnMnS量子點 ……………………………………………………………20 圖1.8 金奈米粒子披覆在二氧化矽奈米微求的......................……………………..…22 圖1.9 二氧化矽螢光奈米球 …………………………………………………………..25 圖1.10 含有APTES的二氧化矽奈米球之矽、碳、氧之間的缺陷 ……………….25 圖2.1 穿透式電子顯微鏡圖顯示由尿素與氯化釓([urea]/[GdCl3•6H2O])之比例不同,在溫度91度下反應4小時下獲得的產物,比例分別為(a) 4,(b) 8,和(c)20。…33 圖2.2 掃描式電子顯微鏡圖顯示 (a) 球型粒子由尿素與氯化釓([urea]/[GdCl3•6H2O])之比例為4,在溫度91℃下反應4小時下獲得, (b) 菱型粒子由比例為4,在溫度91℃下反應10小時下獲得, 和(c) 米粒型複合物由比例為8,在溫度91 ℃下反應10小時。圖(d),(e),和(f)分別(a),(b),和(c)之穿透式電子顯微鏡圖。……34 圖2.3 TEM圖顯示球型轉變為菱形的過程,固定尿素與氯化([urea]/[GdCl3•6H2O])之比例為4,反應時間為 (a) 5 hr、(b) 7 hr、(c) 8 hr和(d) 9 hr。在5 ~ 7 hr時,開始出現碎片,8 hr 之後所有粒子都分解成小粒子在熔融態,在9 hr之後菱形和長方形體開始出現。……………………………………………………………………..35 圖 2.4傅立葉轉換紅外線光譜(FT-IR)鑑定其球形粒子的表面官能基 (a) 球型粒子,(b) 菱型粒子樣品均顯示O-H stretching (☆), νasO-C-O (★), πCO32-(o), and δCO32-(●)……..………………………………………………………………………36 圖2.5 X光粉末繞射圖顯示 (a) 球型粒子,(b) 菱型粒子,和 (c) 米粒型複合物。在30 kV和30 mA下激發光為Cu Kα radiation (λ = 1.5418Å)。…………………..37 圖2.6 國家同步輻射研究中心之利用高解析同步X射線粉末繞射儀分析(a) 菱型(rhombus)和 (b) 球形(sphere)奈米粒子。同步輻射X-ray繞射光源為波長0.9538 Å,確認菱形結構與JCPDF no. 43-0604所提供的相同。針對球形粒子,發現內部含有約1 %結晶性結構與菱形結構相同,因此推斷球形結構與菱形結構有相同結構。.…………………………………………………………………………………. 37 圖2.7 Gd(CO3)(OH)斜方晶體(orthorhombic cell)為架構之GSAS結構精算系統程式中Rietveld 精算方法之結果與菱型Gd樣品的XRD結果比對,結果與實際測得XRD圖譜吻合……………………………………………………………………………..38 圖2.8 Gd(CO3)(OH)的三維晶體,以DASH結構精算系統程式利用模擬退火法模擬 Gd(CO3)(OH)之晶體結構,得到結構晶格結構為a = 7.08109,b = 4.88436,c = 8.45010 Å,V = 292.26 Å3………………..………………………………………39 圖2.9 X光吸收邊緣結構(X-ray absorption near edge structure;XANES) 測量樣品之Gd L-III edge (E0),以氯化釓(GdCl3•3H2O)為+3價之標準品,得到7239.5 eV;菱形奈米粒子:7239.0 eV;球型奈米粒子:7238.9 eV ………………………………….39 圖 2.10 熱重量分析儀(Thermogravimetric Analyzer, TGA)分析物質由室溫室溫約30 ℃加熱到1000 ℃的重量變化百分比:黑色曲線為球形樣品,灰色曲線為菱形樣品…………………………………………………………………………….………41 圖2.11 分析溫度對結構上的影響,依不同溫度燒結3小時之XRD 圖: (a) 球形樣品 (b) 菱形樣品…………………………………………………………………………41 圖2.12 SEM圖顯示合成氧化釓(Gd2O3)是將羥基碳酸釓(Gd(CO3)(OH))在800 ℃下燒結3小時後得到。(a)球型樣品,(b)菱型樣品。電子繞射(ED)分析氧化釓結構之結晶性,(c)球型樣品為多晶結構和(d)菱型樣品為單晶結構………………………42 圖2.13 分析細胞存活率,以釓元素濃度分別為0.1、1、10、50、100、200 μg/mL的碳酸釓奈米粒子,加入以培養24小時的Vero 細胞(猴子腎臟正常細胞)做體外培養,在24小時後,(a)WST-1;(b)MTT方式,在最高濃度200μg/mL下仍顯示存活率大於95%。……………………………………………………………………43 圖2.14 在磁場3 T下,體外磁振造影分析,T1與T2加權影像(T1和T2-weighted images) 分別有球型Gd(CO3)OH,球型Gd2O3,菱形Gd(CO3)OH,和立方體Gd2O3。…………………………………………………………………….…….…44 圖2.15 (a)~(d)為濃度對T1遲緩速率作圖;(e)~(h)為濃度對T2遲緩速率作圖,由斜率獲得r值:(a)和(e)球型Gd(CO3)OH,(b)和(f)球型Gd2O3,(c)和(g)菱形Gd(CO3)OH,和(d)和(h)立方體Gd2O3。…………………………………………………..…..…45 圖2.16 非結晶性球型碳酸釓之動力對比增加核磁共振顯影技術 (DCE-MRI) (a) DCE-MR 影像從4th 到 45th 重複獲得訊號,經由3T核磁共振系統中利用逐漸共鳴影像序列偵測 (白色箭頭: 肝臟; 黑色箭頭: 腎臟; 綠色圓圈: 背景區域). (b) 肝臟區域(白色箭頭)和腎臟區域(黑色箭頭)與背景區域(白色圓圈)比較之訊號數據圖表 (c) 為2分鐘24秒時的影像,在肝臟和腎臟的皮層都有明顯的變亮,可證明球形的Gd(CO3)OH可作為磁振造影顯影劑。 …………………………..……..47 圖2.17生物組織中的分佈實驗,將球形Gd(CO3)OH樣品劑.3 mg/Kg(小鼠重)打入小鼠體內,在注射後0.5、3、6、12小時將這些小鼠犧牲,以ICP分析心(heart)、肝(liver)、脾(spleen)、肺(lung)和腎(Kidney)中Gd 元素的含量…………………..47 圖2.118 TEM圖顯示Gd(CO3)OH為模版之合成二氧化矽,以0.8 mg的Gd(CO3)OH為核,TEOS: 20 μL,經過水解5 hr和聚合1.5 hr,加入的氫氧化鈉濃度為: (1) 0.04 M 和(2) 0.02 M………………………………………………………………………48 圖2.19 TEM圖顯示Gd(CO3)OH為模版之合成二氧化矽,以氫氧化鈉濃度為0.02 M,0.8mg的碳酸釓奈米粒子為核,條件: (1)TEOS: 20 μL,經過水解5 hr和聚合1.5 hr;(2)TEOS: 20 μL,經過水解10 hr和聚合1.5 hr;(3)TEOS: 20 μL,經過水解5 hr和聚合3 hr;(4)TEOS: 40 μL,經過水解5 hr和聚合1.5 hr……………………49 圖2.20 以中空二氧化矽球結合超順磁性氧化鐵奈米粒子:左圖為TEM圖,右圖是在磁場3T下,體外磁振造影分析之T1與T2加權影像(T1和T2-weighted images) 50 圖3.1合成CdSe:Gd 量子點之流程圖…………………………………………………..54 圖3.2 TEM圖顯示CdSe:Gd 量子點在不同成長時間的形貌及大小:(a) 30秒,(b)1 分鐘,和(c) 5 分鐘。右上為單一個粒子之高解析TEM圖,符合wurtzite結構之(100)晶格面。………………………………………………………………………………57 圖3.3 TEM圖顯示CdSe:Gd 量子點在不同成長時間的形貌及大小:(a) 30秒,(b)1 分鐘,和(c) 5 分鐘。……………………………………………………………..……57 圖3.4為XRD圖顯示CdSe:Gd 與CdSe量子點晶體結構與巨相的CdSe為相同的wurtzite 結構,特徵峰為(100)、(002)、(101)、(110)、(103)、(112)。……………..…….58 圖3.5為利用高解析TEM量測反應5分鐘的CdSe:Gd 量子點產物之元素分析光譜圖(EDS),顯示硒化鎘(CdSe)中確實含有微量的Gd元素 …………………………..58 圖3.6 紫外光-可見光光譜圖(UV-Vis spectrum )和螢光光譜圖(Fluorescence spectrum)分別量測CdSe:Gd 量子點的吸收光譜與放光光譜位置隨著反應時間點的延長而有位移現象。……………………………………………………………………..….60 圖3.7 紫外光-可見光光譜圖(UV-Vis spectrum )和螢光光譜圖(Fluorescence spectrum)分別量測CdSe量子點的吸收光譜與放光光譜位置隨著反應時間點的延長而有位移現象。……………………………………………………………………….…….60 圖3.8 利用FT-IR光譜比較賴胺酸與表面修飾有賴胺酸的量子點,發現都有共同的官能基C=O stretching (1660 cm-1 )等官能基。…………………………………….. 61 圖3.9(a)為水相的CdSe:Gd 量子點TEM圖,比例尺20nm。(b)為雷射共軛聚焦顯微鏡(Confocal laser images)觀察量子點在細胞中仍有明顯的螢光顯像,比例尺2μm。………………………………………………………………………..…….….61 圖3.10 T1與T2加權影像(T1和T2-weighted images)為反應五分鐘的修飾有賴胺酸的橘紅色螢光量子點(CdSe:Gd )作為磁振造影之分析,樣品以釓離子濃度為量測單位,在3T的磁場下濃度範圍0.00 ~ 0.15 mM。……………………………………….62 圖3.11 以釓離子濃度對弛緩時間T1倒數作圖,可得到弛緩率(relaxivity),r1弛緩率為 76.7 s-1mM-1和r2弛緩率54.3 s-1mM-1。………………………………..……63 圖3.12 T1加權影像(T1-weighted images)的橘紅色螢光量子點(CdSe:Gd ),以釓離子濃度為0.013 mM,混合細胞培養液與猴子腎臟正常細胞作體外培養3小時,收集細胞測MRI。左為Vero細胞控制組;右為含量子點之Vero細胞。………….….63 圖3.13 CdSe:Gd 量子點對細胞存活率測試生物毒性,釓離子濃度分別為 0、0.01、0.1、10、100和200 μg/mL,加入以培養24小時的Vero 細胞(猴子腎臟正常細胞)做體外培養,在24小時後,以MTT方式分析細胞存活率,在最高濃度200 μg/mL下仍顯示存活率大於95 %。………………………………………………..……64 圖4.1 製備中空螢光二氧化矽奈米球之實驗流程圖……………………………….67 圖4.2 固定尿素與釓離子的莫耳比例5.3,反應90℃維持3小時,(a)無添加界面活性劑CTAB;(b)有添加界面活性劑CTAB…………………………………………..70 圖4.3 固定尿素與釓離子的莫耳比例為5.3和1μmol的CTAB的條件下,取出不同時間點觀察,分別為1、2、及3小時 ……………………………………………70 圖4.4 有添加界面活性劑CTAB,反應90℃維持3小時,尿素與釓離子的莫耳比例分別為(a)10;(b)5.3 …………………………………………………………………70 圖4.5 三種不同粒徑之羥基碳酸釓(Gd(CO3)OH)奈米球之傅立葉轉換紅外線光譜(FTIR),在1200 ~ 1550 cm-1區域為碳酸根(CO3)特徵鋒……………………………71 圖4.6 以108.3nm碳酸釓粒子為核,6%APTES之碳酸釓奈米粒子/二氧化矽核殼結構………………………………………………………………………………….….72 圖4.7 以108.3nm碳酸釓粒子為核,6%APTES之二氧化矽中空奈米球………….72 圖4.8 傅立葉轉換紅外線光譜(FTIR) (a) 碳酸釓奈米粒子/二氧化矽核殼材料; (b)6%APTES之二氧化矽中空奈米球………………………………………….….73 圖4.9 三種粒徑之 6%之二氧化矽中空奈米球 ……………………………….……..75 圖4.10 以108.3 nm為核,掺不同莫耳比例APTES的中空二氧化矽,分別為(a) 0%;(b) 3%;(c) 9%;(d) 12% …………………………………………………………..77 圖4.11以172.5 nm為核,掺不同莫耳比例APTES的中空二氧化矽,分別為(a) 0%;(b) 3%;(c) 9%;(d) 12% …………………………………………………..………78 圖4.12 以380.1 nm為核,掺不同莫耳比例APTES的中空二氧化矽,分別為(a) 0%;(b) 3%;(c) 9%;(d) 12% …………………………………………………………..78 圖4.13 掺不同莫耳比例APTES的中空二氧化矽之螢光光譜,固定1mg量測,(a)以108.3 nm為核;(b) 以172.5 nm為核;(c) 以380.1 nm為核 ………………….80

    文獻
    1. Faraday M. “The Bakerian lecture: experimental relations of gold (and other metals) to light” Phil. Trans. R. Soc. 147, 145-181 (1857).
    2. Kubo R. “Electronic properties of small metallic particles” Physics Letters 1, 2: 49-50 (1962).
    3. Halperin WP. “Quantum size effects in metal particles” Rev. Mod. Phys. 58, 3: 533-606 (1986).
    4. 羅奕凱, 謝光宇, 杜立偉, 蔡振凱. “半導體研究之新領域:Mesoscopic Physics in Quantum Devices” 自然科學簡訊 12, 4: 145-150 (2000).
    5. Alivisatos AP. “Semiconductor clusters, nanocrystals, and quantum dots” Science 271, 5251 : 933-937 (1996).
    6. Buffat Ph, Bore J-P. “Size effect on the melting temperature of gold particles” Phys Rev A 13, 6: 2287-2298 (1976).
    7. Castro T, Reifenberger R, Choi E, Andres RP. “Size-dependent melting temperature of individual nanometer-sized metallic clusters” Phys Rev B. 42, 13: 8548-8556 (1990)
    8. http://en.wikipedia.org/wiki/Superparamagnetism
    9. El-Jaick LJ, Acosta-Avalos D, de Souza Esquivel DM, Wajnberg E, Linhares MP. “Electron paramagnetic resonance study of honeybee Apis mellifera abdomens” Eur Biophys J 29, 8: 579-586 (2001).
    10. Frankel RB, Blakemore RP. “Precipitation of Fe3O4 in magnetotactic bacteria” Phil Trans R Soc Lond B. 304, 1121: 567-574 (1984).
    11. Landauer R. “Conductance determined by transmission: probes and quantized constriction resistance” J. Phys.: Condens. Matter 1, 43: 80998110 (1989).
    12. Liu H-D, ZhaoY-P, Ramanath G, Murarka SP, Wang G-C. “Thickness dependent electrical resistivity of ultrathin (< 40 nm) Cu films” Thin Solid Films 384, 1: 151-156 (2001).
    13. El-sayed MA, Valles Jr JM. “Thickness dependence of the morphology of ultrathin quench condensed gold films” Phys. Rev. B 58, 11: 7347-7350 (1998).
    14. Hunter RJ. “Introduction to Modern Colloid Science” Oxford University Press: Oxford (1993).
    15. (a) Kruyt HR. “Colloid Science” Elsevier Science Publishing Company INC (1952).; (b) 張有義、郭蘭生編譯. “膠體與界面化學入門” 高立圖書有限公司 (1997).
    16. Good RJ, Stromberg RR. “Surface and Colloid Science” Plenum Press. New York and London. Vol.11 (1979); (b)趙承琛編著. “界面科學基礎” 復文書局 (1987).
    17. (a) Schimid G. “Clusters and Colloids:Form Theory to Application” VCH: New York (1994).; (b)Huang HH, Yan FQ, Kek YM, Chew CH, Xu GQ, Ji W., Oh PS, Tang SH. “Synthesis, Characterization, And Nonlinear Optical Properties Of Copper Nanoparticles” Langmuir 13, 2: 172-175 (1997).
    18. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles" Science. 277, 5329: 1078-1080 (1997).
    19. Lee J, Yang J, Koo H, Oh SJ, Kang J, Son JH, Lee K, Lee SW, Yoon HG, Suh JS, Huh YM, Haam S. “Multifunctional Magnetic Gold Nanocomposites: Human Epithelial Cancer Detection via Magnetic Resonance Imaging and Localized Synchronous Therapy" Adv. Funct. Mater. 18, 2: 258-264 (2008).
    20. Grabar KC, Freeman RG, Hommer MB, Natan MJ. “Preparation and characterization of Au colloid monolayers” Anal.Chem. 67, 4: 735-743 (1995).
    21. (a)B. Wiley, Y. Sun, J. Chen, H. Cang, Z.-Y. Li, X. Li and Y. Xia, “Silver and gold nanostructures with well-controlled shapes” MRS Bulletin 30, 5: 356-361 (2005); (b) Zhu Y, Qian Y, Zhang M, Chen Z, Lu B, Wang C. “Preparation of Nanocrystalline Silver Powders by γ-ray Radiation Combined with Hydrothermal Treatment” Mater. Lett. 17, 5: 314-318 (1993).
    22. Zhu Y, Qian Y, Zhang M, Chen Z, Lu B, Zhou G. “γ-Radiation-hydrothermal Synthesis and Characterization of Nanocrystalline Copper Powders” Mater. Sci. Eng. B 23, 2: 116-119 (1994).
    23. Zhu Y, Qian Y, Zhang M, Li Y, Chen Z, Zhou G. “Preparation and Characterization of Ultrafine Powders of Ag-Cu Alloy by the γ-Radiation Method” Alloys. and Compounds 221, 1-2: L4-L5 (1995).
    24. Wu M, Lin Z, Schäferling M, Dürkop A, Wolfbeis OS, “Fluorescence Imaging of the Activity of Glucose Oxidase Using a Hydrogen Peroxide Sensitive Europium Probe” Anal. Bolchem. 340, 1: 66-73 (2005).
    25. G. Mie, "Beiträge zur Optik trüber Medien speziell kolloidaler Goldlösungen (contributions to the optics of diffuse media, especially colloid metal solutions" Ann. Phys 25, 377-445 (1908).
    26. poole LB, Nelson KJ. “Discovering mechanisms of signaling-mediated cysteine oxidation” Curr. Opin. Chem. Biol. 12, 1: 18-24 (2008).
    27. MurrayCB, Norris DJ, Bawendi MG. “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites” J. Am. Chem. Soc. 115, 19: 8706-8715 (1993).
    28. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. “Semiconductor Nanocrystals as Fluorescent Biological Labels” Science 281, 5385: 2013-2016 (1998).
    29. (a) Heaven MW, Dass A, White PS, Holt KM, Smith JE, Tan W. “Watching Silica Nanoparticles Glow in the Biological World” Anal. Chem. 78, 3: 646-654 (2006); (b) Lyon JL, Stevenson KJ. “Picomolar Peroxide Detection Using a Chemically Activated Redox Mediator and Square Wave Voltammetry” Anal. Chem. 78, 24: 8518-8525 (2006).
    30. Huang C-C, Uang Z, Lee K-H, ChangHT, “Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II)” Angew. Chem. Int. Ed. 46, 36: 6824-6828 (2007).
    31. Takagahara T, TaKeda K. “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials” Phys. Rev. B 46, 23: 15578-15581(1992).
    32. (a)Kang Z, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST. “Water-soluble silicon quantum dots with wavelength-tunable photoluminescence” Adv. Mater. 21, 6: 661-664 (2009); (b)Meier C, Gondorf A, Lüttjohann S, Lorke A, Wiggers H. "Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap" J. Appl. Phys. 101, 10: 103112-103119 (2007); (c)Hill NA, Whaley KB. “Size Dependence of Excitons in Silicon Nanocrystals” Phys. Rev. Lett. 75, 6: 1130-1133 (1995); (d)Öğüt S, Chelikowsky JR, “Quantum Confinement and Optical Gaps in Si Nanocrystals” Phys. Rev. Lett. 79, 9: 1770-1773 (1997).
    33. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M. “Biodegradable luminescent porous silicon nanoparticles for in-vivo applications” J. Nat. Mater. 8, 4: 331-336 (2009).
    34. Haase MA, Qiu J, Depuyde JM, Cheng H. “Blue-green laser diodes” Appl. Phys. Lett. 59, 11: 1272-1174 (1991).
    35. Nakamura S, Kitamura K, Umeya H, Jia A, Kobayashi M, Yoshikawa A, Shimotomai M, Kato Y, Takahashi K. “Bright electroluminescence from CdS quantum dot LED structures” Electron Lett. 34, 25: 2435-2436 (1998).
    36. Ishibashi A. “Ⅱ-Ⅵ bule-green light emitters,” J. Crys. Grow. 159, 1-4: 555-565 (1996).
    37. Gammon D, Snow ES, Shanabrook BV, Katzer, DS, Park D. “Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots” Phys. Rev. Lett. 76, 16: 3005–3008 (1996).
    38. Savage N. “LED Light the Future” Tech. Rev. 103, 5: 38 (2000).
    39. Newaz AKM, Chang W-J, Wallace KD, Edge1 LC, Wickline SA, Bashir R, Gilbertson AM, Cohen LF, Solin SA. “A nanoscale Ti/GaAs metal-semiconductor hybrid sensor for room temperature light detection” Appl. Phys. Lett. 97, 8: 082105-7 (2010).
    40. Mitchell P. “Turning the spotlight on cellular imaging” Nat. Bio. 19, 1013-1017 (2001)
    41. Sze SM. “Physics of Semiconductor Device”, Wiley Interscience Publication, New York (1981).
    42. Landholt-Boernstein. New Series, Vol. I Sa, Springer-Verlag, Berlin (1982)
    43. (a)Sze SM. “Physics of Semiconductor Devices” Wiley@Sons (1981); (b) Cervantes P, Williams Q. “Band structure of CdS and CdSe at high pressure” Phy. Rev. B 54, 17585-17590 (1996); (c) Lunz U, Kuhn J, Goschenhofer F. “Temperature dependence of the energy gap of zinc-blende CdSe and Cd1-xZnxSe epitaxial layers’’ J. Appl. Phys. 80, 6861-6863 (1996)
    44. Chen C-C, Herhold AB, Johnson CS, Alivisattos AP, “Size dependence of structural metastability in semiconductor nanocrystals” Science 276, 398-401 (1997).
    45. Bailey RE, Nieand S. “Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size” J. Am. Chem. Soc., 125, 7100-7106 (2003).
    46. Benamar E, Rami M, Fahoume M, Chrabi F, Ennapoi A. “Electrodeposition and characterization of CdSex-Te1-x semiconducting thin films” Solid State Sci. 1, 301-310 (1999).
    47. Blum AS, Moore MH, Ratna BR. “Quantum Dot Fluorescence as a Function of Alkyl Chain Length in Aqueous Environments” Langmuir 24, 9194-9197 (2008).
    48. Wang S, Jarrett BR, Kauzlarich SM, Louie AY. “Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging" J. Am. Chem. Soc. 129, 3848-3856 (2007).
    49. Archer PI, Santangelo SA, Gamelin DR. “Inorganic Cluster Syntheses of TM2+-Doped Quantum Dots (CdSe, CdS, CdSe/CdS): Physical Property Dependence on Dopant Locale,” J. Am. Chem. Soc. 129, 9808-9818 (2007).
    50. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG, “Acid−Base Properties and the Chemical Imaging of Surface-Bound Functional Groups Studied with Scanning Force Microscopy” J. Phys. Chem. B. 101, 9563-9569 (1997).
    51. Danek M, Jensen KF, Bawendi MG. “Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe,” Chem. Mater. 8, 173-180 (1996).
    52. Han M, Gao X , Su JZ, Nie S. “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol” Nat. Bio.. 19, 631-635 (2001)
    53. (a)Peng ZA, Peng XG. “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor” J. Am. Chem. Soc. 123, 183-184.(2001); (b) Qu L, Peng A, Peng XG. “Alternative Routes toward High Quality CdSe Nanocrystals” Nano. Lett., 1, 333-337 (2001)
    54. Liu F-C, Cheng T-L, Shen C-C, Tseng W-L, Chiang.MY. “Synthesis of Cysteine- Capped ZnxCd1-xSe Alloyed Quantum Dots Emitting in the Blue−Green Spectral Range,” Langmuir 24, 2162-2167 (2008).
    55. Vairavamurthy MA, Goldenberg WS, Ouyang S, Khalid S. “The Interaction of Hydrophilic Thiols with Cadmium: Investigation with a Simple Model, 3-Mercaptopropionic Acid” Mar. Chem 70, 181-185 (2000).
    56. Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, Thayer AM, Duncan TM, Douglass DC, Brus LE. “Surface derivatization and isolation of semiconductor cluster molecules” J. Am. Chem. Soc. 110, 3046-3050 (1988)
    57. Gorer S, Hodes G, Sorek Y, Reisfeld R. “Crystal Phase Transformation in Sol-Gel Films of Nanocrystalline CdSe and CdS” Mater. Lett. 31, 209-214 (1997)
    58. Mitchell P. “Turning the spotlight on cellular imaging” Nat. Bio. 19, 1013-1017 (2001).
    59. Gao X, Gui Y, Levenson RM, Chung LWK, Nie S. “In vivo cancer targeting and imaging with semiconductor quantum dots” Nat. Bio. 22, 96-976 (2004).
    60. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. “Luminescent quantum dots for multiplexed biological detection and imaging” Current Opinion in Biotechnology , 13, 40-46 (2002)
    61. Caille JM, Lemanceau B, Bonnemain B. “Gadolinium as a contrast agent for NMR” AJNR Am J Neuroradiol. 4, 1041-1042 (1983)
    62. Brasch RC, London DA, Wesbey GE, Tozer TN, Nitecki DE, Williams RD, Doemeny J, Tuck LD, Lallemand DP. “Work in progress: methods of contrast enhancement for NMR imaging and potential applications” A subject review. Radiology 147, 781-789 (1983)
    63. Wesbey GE, Higgins CB, McNamara MT, Engelstad BL, Lipton MJ, Sievers R. Ehman RL, Lovin J, Brasch RC “Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium” Radiology 153, 165-169 (1984).
    64. McNamara MT, Higgins CB, Ehman RL, Revel D, Sievers R, Brasch RC “Acute myocardial ischemia: magnetic resonance contrast enhancement with gadolinium-DTPA” Radiology 153, 157-163 (1984)
    65. Frank JA, House WV, Lauterbur PC. “Medical Imaging by Nuclear Magnetic Resonance Zeugmatography” Clin. Res. 24, 2174-2811 (1976)
    66. Zanelli GD, Kaelin AC. “Synthetic porphyrins as tumour localizing agents” Br J Radiol. 54, 403-407 (1981)
    67. . Edelstein WA, Bottomley PA, Hart HR, Smith LS. “Signal, noise, and contrast in nuclear magnetic resonance (NMR) imaging” J Comput Assist Tomogr. 7, 391-401 (1983)
    68. Schmiedl U, Ogan MD, Moseley ME, Brasch RC. “Comparison of the contrast-enhancing properties of albumin-(Gd-DTPA) and Gd-DTPA at 2.0 T: and experimental study in rats” AJR AM J Roentgenol. 147, 1263-1270 (1986)
    69. Unger EC, Totty WG, Neufeld DM, Otsuka FL, Murphy WA, Welch MS, Connett JM, Philpott GW “Magnetic Resonance Imaging Using Gadolinium Labeled Monoclonal Antibody” Invest Radiol. 20, 693-700 (1985)
    70. Runge VM, Clanton JA, Smith FW, Hutchison J, Mallard J, Partain CL, James AE, “Nuclear magnetic resonance of iron and copper disease states” AJR AM J Roentgenol. 141, 943-948 (1983)
    71. Wesbey GE, Brasch RC, Engelstad BL, Moss AA, Crooks LE, Brito AC. “Ferric Ammonium Citrate-Cellulose Paste for Opacification of the Esophageal Lumen on MRI” Radiology 149, 175-180 (1983).
    72. Runge VM, Foster MA, Clanton JA, Jones MM, Lukehart CM, Hutchison JM, Mallard JR, Smith FW, Partain CL, James AE, Jr “Contrast enhancement of magnetic resonance images by chromium EDTA: an experimental study” Radiology 152, 123-126 (1984).
    73. Cory DA, Schwartzentruber DJ, Mock BH. “Ingested manganese chloride as a contrast agent for magnetic resonance imaging ” Magn Reson Imaging 5, 65-70 (1987).
    74. Bucciolini M, Ciraolo L, Renzi R. “Relaxation rates of paramagnetic solutions: Evaluation by nuclear magnetic resonance imaging” Med Phys, 13, 298-303 (1986)
    75. Runge VM, Clanton JA, Herzer WA, Gibbs SJ, Price AC, Partain CL, James AE, Jr “Intravascular contrast agents suitable for magnetic resonance imaging” Radiology 153, 171-176 (1984)
    76. Lauffer RB, Greif WL, Stark DD, Vincent AC, Saini S, Wedeen VJ, Brady TJ. “Iron-EHPG as an Hepatobiliary MR Contrast Agent: Initial Imaging and Biodistribution Studies” J Comput Assist Tomoger. 9, 431-438 (1985).
    77. Jackson LS, Nelson JA Case T A.; Burnham B. “Manganese Protoporphyrin IX: A Potential Intravenous Paramagnetic NMR Contrast Agent: Preliminary Communication” Invest Radiol. 20, 226-229 (1985).
    78. Reynolds CH, Annan HN, Beshah K, Huber JH, Shaber SH, Lenkinski RE, Wortman JA “Gadolinium-Loaded Nanoparticles: New Contrast Agents for Magnetic Resonance Imaging" J. Am. Chem. Soc.122, 894-945 (2000).
    79. Turner JL, Pan D, Plummer R, Chen Z, Whittaker AK, Wooley KL. “Synthesis of Gadolinium-Labeled Shell-Crosslinked Nanoparticles for Magnetic Resonance Imaging Applications” Adv. Funct. Mater. 15, 1248-1254 (2005)
    80. Yang H, Santra S, Walter GA, Holloway PH. “GdIII-Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes ” Adv. Mater, 18, 2890-2894 (2006)
    81. Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K.”Gadolinium-based hybrid nanoparticles as a positive MR contrast agent” J. Am Chem Soc. 128, 15090-15091 (2006)
    82. Mikulec FV, Kuno M, Bennati M, Hall DA, Griffin RG, Bawendi MG. “Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals” J. Am. Chem. Soc. 122, 2532–2540 (2000).
    83. Wang S, Jarrett BR, Kauzlarich SM, Louie AY. “Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging” J. Am. Chem. Soc. 129, 3848–3856 (2007).
    84. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa C H, de la Rosette J, Weissleder R, “Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer” N. Engl. J. Med. 348, 2491-2499 (2003)
    85. Cheng F-Y, Su C-H, Yang Y-S, Tsa C-Y, Wu C-L, Wu M-T, Shieh Dar-Bin, YehChen-Sheng “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications” Biomaterials 26, 729-738 (2005).
    86. Jun YW, HuhY-M, Choi J-S, Lee J-H, Song H-T, Kim S, Kim S, Yoon S, Kim K-S, Shin J-S, Suh J-S, Cheon J. “Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging” J. Am. Chem. Soc. 127, 5732-5733 (2005)
    87. Su C-H, Sheu H-S, Lin C-Y, Huang C-C, Lo Y-W, PuY-C, Weng J-C, Shieh D-B, Chen J-H, Yeh C-S “Nanoshell Magnetic Resonance Imaging Contrast Agents” J. Am. Chem. Soc. 129, 2139-2145 (2007)
    88. Chen C-C, Liu Y-C, Wu C-H, Yeh C-C, Su M-T, Wu Y-C “Preparation of Fluorescent Silica Nanotubes and Their Application in Gene Delivery” Adv. Mater. 17, 404-407 (2005).
    89. 顧寧, 付德剛, 張海黔, “奈米技術與應用” 滄海書局 (2003)
    90. Jang J, Yoon H. “Novel Fabrication of Size-Tunable Silica Nanotubes Using a Reverse- Microemulsion-Mediated Sol–Gel Method” Adv. Mater. 16, 799-802 (2004).
    91. Ono Y, Nakashima K, Sano M, KanekiyoY, Inoue K, Hojo J, Shinkai S. “Organic gels are useful as a template for the preparation of hollow fiber silica” Chem. Commun. 14, 1477-1478 (1998).
    92. Jung JH, Lee SH, Yoo JS, Yoshida K, Shimizu T, Shinkai S. “Creation of Double Silica Nanotubes by Using Crown-Appended Cholesterol Nanotubes” Chem. Eur. J. 9, 5307-5313 (2003).
    93. Ogihara H, Takenaka S, Yamanaka I, Tanabe E, Genseki A, Otsuka K. “Synthesis of SiO2 Nanotubes and Their Application as Nanoscale Reactors” Chem. Mater. 18, 996-1000 (2006)
    94. Zygmunt J, Krumeich F, Nesper R. “Novel Silica Nanotubes with a High Aspect Ratio—Synthesis and Structural Characterization” Adv. Mater. 15, 1538-1541 (2003)
    95. Meegan JE, Aggeli A, Boden N, Brydson R, Brown AP, Carrick L, Brough AR, Hussain A, Ansell RJ. “Micropixelated Luminescent Nanocrystal Arrays Synthesized by Ion Implantation” Adv. Mater. 16, 31-34 (2004).
    96. 林芳新, 董瑞安 “奈米核殼複合粒子的製備及生醫應用” 科儀新知 153 (2006).
    97. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. “Nanoengineering of optical resonances” Chem. Phys. Lett. 288, 243-247 (1998).
    98. Hu KW, Jhang FY, Su CH, Yeh CS. “Fabrication of Gd2O(CO3)2.H2O/silica/gold hybrid particles as a bifunctional agent for MR imaging and photothermal destruction of cancer cells” J. Mater. Chem. 19, 2147-2153 (2009).
    99. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP. “Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots” J. Phys. Chem. B. 105, 8861–8871 (2001).
    100. Leng Y, Sato K, Shi Y, Li J-G, Ishigaki T, Yoshida T, Kamiya H.“Oxidation-Resistant Silica Coating on Gas-Phase-Reduced Iron Nanoparticles and Influence on Magnetic Properties” J Phys Chem C 113, 16681-16685 (2009)
    101. Yugang S, Xia Y “Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes” Anal. Chem. 74, 5297-5305 (2002).
    102. Wong MS, Cha JN, Deming TJ, Stucky GD. “Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides” Nano Lett. 2, 583-587 (2002).
    103. Hu KW, Huang CC, Hwu JR, Su WC, Shieh DB, Yeh CS. “A New Photothermal Therapeutic Agent: Core-Free Nanostructured AuxAg1-x Dendrites” Chem. Eur. J. 14, 2956-2964 (2008).
    104. Pu YC, Hwu JR, Su WC, Shieh DB, Tzeng YH, Yeh CS. "A Water Dissolvable Sodium Sulfate Nanowires as a Versatile Template for the Synthesis of Polyelectrolyte and Metal-Based Nanotubes" J. Am. Chem. Soc. 128, 11606-11611 (2006).
    105. Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo, LW “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution” Adv. Funct. Mater. 19, 215-222 (2009).
    106. Santos IP, Juste JP, Marzán ML. “Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods” Chem. Mater. 18, 2465-2467 (2006).
    107. Rossi LM, Shi L, Quina FH, Rosenzweig Z. “Stöber Synthesis of Monodispersed Luminescent Silica Nanoparticles for Bioanalytical Assays” Langmuir. 21, 4277-4280 (2005).
    108. Jakob AM, Schmedake TA. “A Novel Approach to Monodisperse, Luminescent Silica Spheres” Chem. Mater. 18, 3173-3175 (2006).
    109. Green H, Le P, Grey J, Au T, Sailor J. “White Phosphors from a Silicate-Carboxylate Sol-Gel Precursor That Lack Metal Activator Ions” Science 276, 1826-1828 (1997).
    110. Ho C, Hitchens TK “A Non-Invasive Approach to Detecting Organ Rejection by MRI: Monitoring the Accumulation of Immune Cells At the Transplanted Organ” Curr. Pharm. Biotechnol. 5, 551-566 (2004).
    111. Natanzon A, Aletras AH, Hsu LY, Arai AE “Determining Canine Myocardial Area at Risk with Manganese-enhanced MR Imaging” Radiology, 236, 859-866 (2005).
    112. Ahn JH, Yoo CI, .Lee CR, Lee JH, Lee H, Kim CY, Park, JK, Sakai T, Yoon CS, Kim Y. “Calcification Mimicking Manganese-Induced Increased Signal Intensities in T1-Weighted MR Images in a Patient Taking Herbal Medicine: Case Report” Neurotoxicology 24, 835-838 (2003).
    113. Jackson GE, Byrne MJ, Blekkenhorst G, Hendry AJ “Chromium-cage complex as contrast agent in MR imaging-biodistribution studies of the [57Co]cobalt analogue" Int. J. Rad. Appl. Instrum. B 18, 855-858 (1991).
    114. Aime S, Crich SG, Gianolio E, Giovenzana GB, Tei L, Terreno E. “High sensitivity lanthanide(III) based probes for MR-medical imaging” Coord. Chem. Rev. 250, 1562-1579 (2006).
    115. Fossheim S, Saebo KB, Fahlvik AK, Rongved P, Klaveness J. “Low molecular weight lanthanide contrast agents: In vitro studies of mechanisms of action” J. Magn. Reson. Imaging 7, 251-257 (1997).
    116. Reynolds CH, Annan HN, Beshah K, Huber JH, Shaber SH, Lenkinski RE, Wortman JA “Gadolinium-Loaded Nanoparticles: New Contrast Agents for Magnetic Resonance Imaging” J. Am. Chem. Soc. 122, 8940-8945 (2000).
    117. Lin YS, Hung Y, Su JK, Lee R, Chang C, Lin ML, Mou CY. “Gadolinium(III)- Incorporated Nanosized Mesoporous Silica as Potential Magnetic Resonance Imaging Contrast Agents” J. Phys. Chem. B, 108, 15608-15611 (2004).
    118. Turner JL, Pan D, Plummer R, Chen Z, Whittaker AK, Wooley KL “Synthesis of Gadolinium-Labeled Shell-Crosslinked Nanoparticles for Magnetic Resonance Imaging Applications” Adv. Funct. Mater. 15, 1248-1254 (2005).
    119. Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgil BM, Mericle RA. “Synthesis and Characterization of Fluorescent, Radio-Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications” Adv. Mater. 17, 2165-2169 (2005).
    120. Rieter WJ, Taylor KML, An H, Lin W. “Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents” J. Am. Chem. Soc. 128, 9024-9025 (2006).
    121. Bridot JL, Faure AC, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O. “Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for in Vivo Imaging” J. Am. Chem. Soc. 129, 5076-5084 (2007).
    122. Werner PE. In “Structure Determination from Powder iffraction Data” Divid WIF, Shankland K, McCusker LB, Baerlocher Ch., Eds.; IUCr Monographs 13, Oxford University Press. 118-134 (2002)..
    123. Feng W-J, Zhou G-P, Liu Z-B, XuY. “Nd(CO3)(OH) from single-crystal data” Acta Cryst. E63, i174 (2007).
    124. Sheu H-S, Shih W-J ,.Chuang W-T, Li I-F, Yeh C-S “Crystal Structure and Phase Transitions of Gd(CO3)OH Studied by Synchrotron Powder Diffraction” J. Chin. Chem. Soc. 57, 938-945 (2010).
    125. ShawW. H. R., Bordeaux J. J., “The Decomposition of Urea in Aqueous Media” J. Am. Chem. Soc. 77, 4729-4733 (1955).
    126. Evanics F, Diamente PR, van Veggel FCJM, Stanisz GJ, Prosser RS. “Water-Soluble GdF3 and GdF3/LaF3 Nanoparticles Physical Characterization and NMR Relaxation Properties” Chem. Mater. 18, 2499-2505 (2006).
    127. Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K, “Gadolinium-Based Hybrid Nanoparticles as a Positive MR Contrast Agent” J. Am. Chem. Soc. 128, 15090-15091 (2006).
    128. Rieter WJ, Taylor KML, AnH , Lin W, Lin W. “Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents” J. Am. Chem. Soc. 128, 9024- 9025 (2006).
    129. Huang C-C, Liu T-Y, Su C-H, Lo Y-W, Chen J-H, Yeh C-S. “Superparamagnetic Hollow and Paramagnetic Porous Gd2O3 Particles” Chem. Mater. 20, 3840–3848 (2008).
    130. Li I-F, Su C-H, Sheu H-S, Chiu H.-C, Lo, Y-W Lin W-T, Chen J-H, Yeh C-S. “Gd2O(CO3)2 • H2O Particles and the Corresponding Gd2O3: Synthesis and Applications of Magnetic Resonance Contrast Agents and Template Particles for Hollow Spheres and Hybrid Composites” Adv. Funct. Mater. 18, 766–776 (2008).
    131. Huang C-C, Huang W, Su C-H, Feng C-N, Kuoa W-S, Yeh C-S. “A general approach to silicatenanoshells: gadolinium silicate and gadolinium silicate:europium nanoshells for dual-modality optical and MR imaging” Chem. Commun. 3360–3362 (2009).
    132. Wang S, Jarrett BR, Kauzlarich SM, Louie AY. “Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging” J. Am. Chem. Soc. 129, 3848-3856 (2007).
    133. Kang T, Sung J, Shim W, Moon H, Cho J, Jo Y, Lee W, Kim B. “Synthesis and Magnetic Properties of Single-Crystalline Mn/Fe-Doped and Co-doped ZnS Nanowires and Nanobelts” J. Phys. Chem. C 113, 5352–5357 (2009).
    134. Meulenberg RW, van Buuren T, Hanif KM, Willey TM, Strouse GF, Terminello LJ, “Structure and Composition of Cu-Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy” Nano Lett. 4, 2277-2285 (2004).
    135. Singh K, Kumar S, Verma NK, Bhatti HS. “Photoluminescence properties of Eu3+-doped Cd1− x Znx S quantum dots” J Nanopart Res. 11, 1017–1021 (2009).
    136. Chengelis DA, Yingling AM, Badger PD, Shade CM, Petoud S. “Incorporating Lanthanide Cations with Cadmium Selenide Nanocrystals: A Strategy to Sensitize and Protect Tb(III)” J. Am. Chem. Soc. 127, 16752-16753 (2005).
    137. Hua R, Niu J, Li M, Yu T, Li W. “Electroluminescent properties of device based on ZnS:Tb/CdS core-shell nanocrystals” Chem. Phys. Lett. 419, 269-272 (2006).
    138. Blum AS, Moore MH and Ratna BR. “Quantum Dot Fluorescence as a Function of Alkyl Chain Length in Aqueous Environments” Langmuir. 24, 17, 9194-9197 (2008)
    139. Raola OE and Strouse GF. “Synthesis and Characterization of Eu-Doped Cadmium Selenide Nanocrystals” Nano Lett. 2, 12, 1443-1447 (2002)

    下載圖示 校內:2012-01-31公開
    校外:2012-01-31公開
    QR CODE