| 研究生: |
李宜芳 Li, I-Fang |
|---|---|
| 論文名稱: |
發展磁振造影顯影劑與螢光奈米材料 Development of MR imaging and Fluorescent nanomaterials |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 釓 、磁振造影 、硒化鎘 、螢光顯影 、二氧化矽空球 |
| 外文關鍵詞: | Gadolinium, MR contrast agents, CdSe, fluorescence, hollow silica sphere |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來許多研究著重在製備多功能無機材料奈米,並應用在體外(in vitro)或體內(in vivo)生醫方面。無侵入性的磁振造影技術被認定對人體無傷害性,並可提供解剖學上的高對比解析的資訊。近期的磁振顯影劑主要可歸類成兩類:以順磁性種類為主之T1正向顯影劑,例如釓離子(Gd3+)配位化合物;另外是以超順磁氧化鐵粒子為主之T2負向顯影劑。
第一部份,我們探討碳羥基碳酸釓(Gd(CO3)OH)奈米粒子和其相關之氧化釓(Gd2O3)的合成和應用。我們的研究發現碳酸釓球型粒子擁有多方面的功能,除了可當磁振顯影劑,並且可以粒子作為模板製備空球和混雜複合材料。我們的研究可分類為三個主題:(1)我們是第一個研究報導碳酸釓膠體粒子,其合成方式是利用含結晶水之氯化釓鹽類和尿素在低溫下迴流過程中產生。藉由高解析同步加速器X射線粉末繞射詳細分析得到精確的晶體結構,顯示為具有斜方晶系對稱(orthorhombic symmetry)結晶性的碳酸氧化釓;(2)這些製備出來的含釓的粒子可同時作為T1正向和T2負向雙顯影劑。另外,由生物分佈研究指出粒子可在血管中循環,並可能在組織中被代謝排出組織;(3)碳酸氧化釓球型粒子表面容易修飾,具有潛力作為多模態(multimodal)粒子,我們以此碳酸釓球型粒子作為理想的模板,來製備中空的矽膠球殼和外接氧化鐵的中空矽膠球殼之混雜複合材料。
第二部份,我們合成親水性的掺釓之硒化鎘(CdSe:Gd NPs)量子點,隨著反應時間增加,由30秒到5分鐘,吸收與放光皆產生紅位移,粒徑6.3 nm的量子點
具有高r1值為76.7 s-1mM-1,同時具有螢光顯影探針和磁振顯影劑效果。
第三部分,以碳酸氧化釓奈米粒子此硬性材質的模板合成二氧化矽空球,經由高溫鍛燒後二氧化矽空球結構中產生有機發光產物,在給予激發能量後會產生螢光,其中以丙胺三乙氧基矽烷(APTES) 佔總矽氧烷類前趨物為6 mol%之二氧化矽空球,並以升溫速率為 2 ℃/min條件下鍛燒300 ℃並持溫1 hr具有最好的量子產率。
Recently, research has been centred on the fabrication of the multifunctional inorganic-based particulate agents for in vitro and in vivo biomedical applications. The non-invasive MRI, recognized as harmless to the body, provides anatomical details in diagnosis and offers highly resolved contrast. Currently, MR contrast agents are categorized into T1-positive agents of paramagnetic species, such as gadolinium (Gd3+)-based complexes and T2-negative agents of superparamagnetic iron oxide particles.
In part I, Herein, we report the synthesis and applications of Gd(CO3)OH colloidal particles and their corresponding Gd2O3. The Gd(CO3)OH spherical particles exhibited multifunctional capability by the observation of showing MR contrast effect and developing as multimodal materials. Our findings can be categorized to three main themes: (i) We wish to present the first report of the Gd(CO3)OH colloidal particles, which readily synthesized with GdCl3•6H2O and urea by reflux process under a low temperature. With the detailed characterization of the high resolution synchrotron powder X-ray diffraction, crystal structural information has shown the exact crystal packing with orthorhombic symmetry for crystalline Gd(CO3)OH sample.; (ii) These newly prepared Gd-containg particles showed the effective bimodal T1-positive and T2-negative contrast agents. The biodistribution studies indicted that the particles could circulate in the vessels and possibly metabolically excreted from organs after 12 h.; (iii) The Gd(CO3)OH spherical particles potentially acted as multimodal particles because of readily surface engineering, which was normally limited in the inorganic Gd-related particles. We thus demonstrated that the Gd(CO3)OH spheres as an ideal template to form hollow silica nanoshells and hollow silica@Fe3O4 hybrid particles, which was reported for the first time.
In part II, we report the first example of water-soluble Gd doped CdSe nanoparticles (CdSe:Gd NPs) with dual modality in optical and MR imaging functionalities. The resulting CdSe:Gd NPs were 6.3 nm in diameter and exhibited high r1 relaxivity, 76.7 s-1mM-1, giving the largest relaxivity among the reported Gd-related nanoparticles. CdSe:Gd NPs also served as fluorescence probes in cellular imaging.
In part III, Gd(CO3)OH nanoparticles as a hard template was used to synthesize hollow silica nanospheres. Calcination of hollow silica nanosphere created fluorescent organic compound in the structure which can irradiated fluorescence. The results showed mol % of APTES/silane precursor = 6 % of hollow silica nanospheres were dried and subsequently calcined in air at 300 ℃ for 1 hr at heating rate 2 ℃/min condition provided best quantum yield.
文獻
1. Faraday M. “The Bakerian lecture: experimental relations of gold (and other metals) to light” Phil. Trans. R. Soc. 147, 145-181 (1857).
2. Kubo R. “Electronic properties of small metallic particles” Physics Letters 1, 2: 49-50 (1962).
3. Halperin WP. “Quantum size effects in metal particles” Rev. Mod. Phys. 58, 3: 533-606 (1986).
4. 羅奕凱, 謝光宇, 杜立偉, 蔡振凱. “半導體研究之新領域:Mesoscopic Physics in Quantum Devices” 自然科學簡訊 12, 4: 145-150 (2000).
5. Alivisatos AP. “Semiconductor clusters, nanocrystals, and quantum dots” Science 271, 5251 : 933-937 (1996).
6. Buffat Ph, Bore J-P. “Size effect on the melting temperature of gold particles” Phys Rev A 13, 6: 2287-2298 (1976).
7. Castro T, Reifenberger R, Choi E, Andres RP. “Size-dependent melting temperature of individual nanometer-sized metallic clusters” Phys Rev B. 42, 13: 8548-8556 (1990)
8. http://en.wikipedia.org/wiki/Superparamagnetism
9. El-Jaick LJ, Acosta-Avalos D, de Souza Esquivel DM, Wajnberg E, Linhares MP. “Electron paramagnetic resonance study of honeybee Apis mellifera abdomens” Eur Biophys J 29, 8: 579-586 (2001).
10. Frankel RB, Blakemore RP. “Precipitation of Fe3O4 in magnetotactic bacteria” Phil Trans R Soc Lond B. 304, 1121: 567-574 (1984).
11. Landauer R. “Conductance determined by transmission: probes and quantized constriction resistance” J. Phys.: Condens. Matter 1, 43: 80998110 (1989).
12. Liu H-D, ZhaoY-P, Ramanath G, Murarka SP, Wang G-C. “Thickness dependent electrical resistivity of ultrathin (< 40 nm) Cu films” Thin Solid Films 384, 1: 151-156 (2001).
13. El-sayed MA, Valles Jr JM. “Thickness dependence of the morphology of ultrathin quench condensed gold films” Phys. Rev. B 58, 11: 7347-7350 (1998).
14. Hunter RJ. “Introduction to Modern Colloid Science” Oxford University Press: Oxford (1993).
15. (a) Kruyt HR. “Colloid Science” Elsevier Science Publishing Company INC (1952).; (b) 張有義、郭蘭生編譯. “膠體與界面化學入門” 高立圖書有限公司 (1997).
16. Good RJ, Stromberg RR. “Surface and Colloid Science” Plenum Press. New York and London. Vol.11 (1979); (b)趙承琛編著. “界面科學基礎” 復文書局 (1987).
17. (a) Schimid G. “Clusters and Colloids:Form Theory to Application” VCH: New York (1994).; (b)Huang HH, Yan FQ, Kek YM, Chew CH, Xu GQ, Ji W., Oh PS, Tang SH. “Synthesis, Characterization, And Nonlinear Optical Properties Of Copper Nanoparticles” Langmuir 13, 2: 172-175 (1997).
18. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles" Science. 277, 5329: 1078-1080 (1997).
19. Lee J, Yang J, Koo H, Oh SJ, Kang J, Son JH, Lee K, Lee SW, Yoon HG, Suh JS, Huh YM, Haam S. “Multifunctional Magnetic Gold Nanocomposites: Human Epithelial Cancer Detection via Magnetic Resonance Imaging and Localized Synchronous Therapy" Adv. Funct. Mater. 18, 2: 258-264 (2008).
20. Grabar KC, Freeman RG, Hommer MB, Natan MJ. “Preparation and characterization of Au colloid monolayers” Anal.Chem. 67, 4: 735-743 (1995).
21. (a)B. Wiley, Y. Sun, J. Chen, H. Cang, Z.-Y. Li, X. Li and Y. Xia, “Silver and gold nanostructures with well-controlled shapes” MRS Bulletin 30, 5: 356-361 (2005); (b) Zhu Y, Qian Y, Zhang M, Chen Z, Lu B, Wang C. “Preparation of Nanocrystalline Silver Powders by γ-ray Radiation Combined with Hydrothermal Treatment” Mater. Lett. 17, 5: 314-318 (1993).
22. Zhu Y, Qian Y, Zhang M, Chen Z, Lu B, Zhou G. “γ-Radiation-hydrothermal Synthesis and Characterization of Nanocrystalline Copper Powders” Mater. Sci. Eng. B 23, 2: 116-119 (1994).
23. Zhu Y, Qian Y, Zhang M, Li Y, Chen Z, Zhou G. “Preparation and Characterization of Ultrafine Powders of Ag-Cu Alloy by the γ-Radiation Method” Alloys. and Compounds 221, 1-2: L4-L5 (1995).
24. Wu M, Lin Z, Schäferling M, Dürkop A, Wolfbeis OS, “Fluorescence Imaging of the Activity of Glucose Oxidase Using a Hydrogen Peroxide Sensitive Europium Probe” Anal. Bolchem. 340, 1: 66-73 (2005).
25. G. Mie, "Beiträge zur Optik trüber Medien speziell kolloidaler Goldlösungen (contributions to the optics of diffuse media, especially colloid metal solutions" Ann. Phys 25, 377-445 (1908).
26. poole LB, Nelson KJ. “Discovering mechanisms of signaling-mediated cysteine oxidation” Curr. Opin. Chem. Biol. 12, 1: 18-24 (2008).
27. MurrayCB, Norris DJ, Bawendi MG. “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites” J. Am. Chem. Soc. 115, 19: 8706-8715 (1993).
28. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. “Semiconductor Nanocrystals as Fluorescent Biological Labels” Science 281, 5385: 2013-2016 (1998).
29. (a) Heaven MW, Dass A, White PS, Holt KM, Smith JE, Tan W. “Watching Silica Nanoparticles Glow in the Biological World” Anal. Chem. 78, 3: 646-654 (2006); (b) Lyon JL, Stevenson KJ. “Picomolar Peroxide Detection Using a Chemically Activated Redox Mediator and Square Wave Voltammetry” Anal. Chem. 78, 24: 8518-8525 (2006).
30. Huang C-C, Uang Z, Lee K-H, ChangHT, “Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II)” Angew. Chem. Int. Ed. 46, 36: 6824-6828 (2007).
31. Takagahara T, TaKeda K. “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials” Phys. Rev. B 46, 23: 15578-15581(1992).
32. (a)Kang Z, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST. “Water-soluble silicon quantum dots with wavelength-tunable photoluminescence” Adv. Mater. 21, 6: 661-664 (2009); (b)Meier C, Gondorf A, Lüttjohann S, Lorke A, Wiggers H. "Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap" J. Appl. Phys. 101, 10: 103112-103119 (2007); (c)Hill NA, Whaley KB. “Size Dependence of Excitons in Silicon Nanocrystals” Phys. Rev. Lett. 75, 6: 1130-1133 (1995); (d)Öğüt S, Chelikowsky JR, “Quantum Confinement and Optical Gaps in Si Nanocrystals” Phys. Rev. Lett. 79, 9: 1770-1773 (1997).
33. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M. “Biodegradable luminescent porous silicon nanoparticles for in-vivo applications” J. Nat. Mater. 8, 4: 331-336 (2009).
34. Haase MA, Qiu J, Depuyde JM, Cheng H. “Blue-green laser diodes” Appl. Phys. Lett. 59, 11: 1272-1174 (1991).
35. Nakamura S, Kitamura K, Umeya H, Jia A, Kobayashi M, Yoshikawa A, Shimotomai M, Kato Y, Takahashi K. “Bright electroluminescence from CdS quantum dot LED structures” Electron Lett. 34, 25: 2435-2436 (1998).
36. Ishibashi A. “Ⅱ-Ⅵ bule-green light emitters,” J. Crys. Grow. 159, 1-4: 555-565 (1996).
37. Gammon D, Snow ES, Shanabrook BV, Katzer, DS, Park D. “Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots” Phys. Rev. Lett. 76, 16: 3005–3008 (1996).
38. Savage N. “LED Light the Future” Tech. Rev. 103, 5: 38 (2000).
39. Newaz AKM, Chang W-J, Wallace KD, Edge1 LC, Wickline SA, Bashir R, Gilbertson AM, Cohen LF, Solin SA. “A nanoscale Ti/GaAs metal-semiconductor hybrid sensor for room temperature light detection” Appl. Phys. Lett. 97, 8: 082105-7 (2010).
40. Mitchell P. “Turning the spotlight on cellular imaging” Nat. Bio. 19, 1013-1017 (2001)
41. Sze SM. “Physics of Semiconductor Device”, Wiley Interscience Publication, New York (1981).
42. Landholt-Boernstein. New Series, Vol. I Sa, Springer-Verlag, Berlin (1982)
43. (a)Sze SM. “Physics of Semiconductor Devices” Wiley@Sons (1981); (b) Cervantes P, Williams Q. “Band structure of CdS and CdSe at high pressure” Phy. Rev. B 54, 17585-17590 (1996); (c) Lunz U, Kuhn J, Goschenhofer F. “Temperature dependence of the energy gap of zinc-blende CdSe and Cd1-xZnxSe epitaxial layers’’ J. Appl. Phys. 80, 6861-6863 (1996)
44. Chen C-C, Herhold AB, Johnson CS, Alivisattos AP, “Size dependence of structural metastability in semiconductor nanocrystals” Science 276, 398-401 (1997).
45. Bailey RE, Nieand S. “Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size” J. Am. Chem. Soc., 125, 7100-7106 (2003).
46. Benamar E, Rami M, Fahoume M, Chrabi F, Ennapoi A. “Electrodeposition and characterization of CdSex-Te1-x semiconducting thin films” Solid State Sci. 1, 301-310 (1999).
47. Blum AS, Moore MH, Ratna BR. “Quantum Dot Fluorescence as a Function of Alkyl Chain Length in Aqueous Environments” Langmuir 24, 9194-9197 (2008).
48. Wang S, Jarrett BR, Kauzlarich SM, Louie AY. “Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging" J. Am. Chem. Soc. 129, 3848-3856 (2007).
49. Archer PI, Santangelo SA, Gamelin DR. “Inorganic Cluster Syntheses of TM2+-Doped Quantum Dots (CdSe, CdS, CdSe/CdS): Physical Property Dependence on Dopant Locale,” J. Am. Chem. Soc. 129, 9808-9818 (2007).
50. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG, “Acid−Base Properties and the Chemical Imaging of Surface-Bound Functional Groups Studied with Scanning Force Microscopy” J. Phys. Chem. B. 101, 9563-9569 (1997).
51. Danek M, Jensen KF, Bawendi MG. “Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe,” Chem. Mater. 8, 173-180 (1996).
52. Han M, Gao X , Su JZ, Nie S. “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol” Nat. Bio.. 19, 631-635 (2001)
53. (a)Peng ZA, Peng XG. “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor” J. Am. Chem. Soc. 123, 183-184.(2001); (b) Qu L, Peng A, Peng XG. “Alternative Routes toward High Quality CdSe Nanocrystals” Nano. Lett., 1, 333-337 (2001)
54. Liu F-C, Cheng T-L, Shen C-C, Tseng W-L, Chiang.MY. “Synthesis of Cysteine- Capped ZnxCd1-xSe Alloyed Quantum Dots Emitting in the Blue−Green Spectral Range,” Langmuir 24, 2162-2167 (2008).
55. Vairavamurthy MA, Goldenberg WS, Ouyang S, Khalid S. “The Interaction of Hydrophilic Thiols with Cadmium: Investigation with a Simple Model, 3-Mercaptopropionic Acid” Mar. Chem 70, 181-185 (2000).
56. Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, Thayer AM, Duncan TM, Douglass DC, Brus LE. “Surface derivatization and isolation of semiconductor cluster molecules” J. Am. Chem. Soc. 110, 3046-3050 (1988)
57. Gorer S, Hodes G, Sorek Y, Reisfeld R. “Crystal Phase Transformation in Sol-Gel Films of Nanocrystalline CdSe and CdS” Mater. Lett. 31, 209-214 (1997)
58. Mitchell P. “Turning the spotlight on cellular imaging” Nat. Bio. 19, 1013-1017 (2001).
59. Gao X, Gui Y, Levenson RM, Chung LWK, Nie S. “In vivo cancer targeting and imaging with semiconductor quantum dots” Nat. Bio. 22, 96-976 (2004).
60. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. “Luminescent quantum dots for multiplexed biological detection and imaging” Current Opinion in Biotechnology , 13, 40-46 (2002)
61. Caille JM, Lemanceau B, Bonnemain B. “Gadolinium as a contrast agent for NMR” AJNR Am J Neuroradiol. 4, 1041-1042 (1983)
62. Brasch RC, London DA, Wesbey GE, Tozer TN, Nitecki DE, Williams RD, Doemeny J, Tuck LD, Lallemand DP. “Work in progress: methods of contrast enhancement for NMR imaging and potential applications” A subject review. Radiology 147, 781-789 (1983)
63. Wesbey GE, Higgins CB, McNamara MT, Engelstad BL, Lipton MJ, Sievers R. Ehman RL, Lovin J, Brasch RC “Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium” Radiology 153, 165-169 (1984).
64. McNamara MT, Higgins CB, Ehman RL, Revel D, Sievers R, Brasch RC “Acute myocardial ischemia: magnetic resonance contrast enhancement with gadolinium-DTPA” Radiology 153, 157-163 (1984)
65. Frank JA, House WV, Lauterbur PC. “Medical Imaging by Nuclear Magnetic Resonance Zeugmatography” Clin. Res. 24, 2174-2811 (1976)
66. Zanelli GD, Kaelin AC. “Synthetic porphyrins as tumour localizing agents” Br J Radiol. 54, 403-407 (1981)
67. . Edelstein WA, Bottomley PA, Hart HR, Smith LS. “Signal, noise, and contrast in nuclear magnetic resonance (NMR) imaging” J Comput Assist Tomogr. 7, 391-401 (1983)
68. Schmiedl U, Ogan MD, Moseley ME, Brasch RC. “Comparison of the contrast-enhancing properties of albumin-(Gd-DTPA) and Gd-DTPA at 2.0 T: and experimental study in rats” AJR AM J Roentgenol. 147, 1263-1270 (1986)
69. Unger EC, Totty WG, Neufeld DM, Otsuka FL, Murphy WA, Welch MS, Connett JM, Philpott GW “Magnetic Resonance Imaging Using Gadolinium Labeled Monoclonal Antibody” Invest Radiol. 20, 693-700 (1985)
70. Runge VM, Clanton JA, Smith FW, Hutchison J, Mallard J, Partain CL, James AE, “Nuclear magnetic resonance of iron and copper disease states” AJR AM J Roentgenol. 141, 943-948 (1983)
71. Wesbey GE, Brasch RC, Engelstad BL, Moss AA, Crooks LE, Brito AC. “Ferric Ammonium Citrate-Cellulose Paste for Opacification of the Esophageal Lumen on MRI” Radiology 149, 175-180 (1983).
72. Runge VM, Foster MA, Clanton JA, Jones MM, Lukehart CM, Hutchison JM, Mallard JR, Smith FW, Partain CL, James AE, Jr “Contrast enhancement of magnetic resonance images by chromium EDTA: an experimental study” Radiology 152, 123-126 (1984).
73. Cory DA, Schwartzentruber DJ, Mock BH. “Ingested manganese chloride as a contrast agent for magnetic resonance imaging ” Magn Reson Imaging 5, 65-70 (1987).
74. Bucciolini M, Ciraolo L, Renzi R. “Relaxation rates of paramagnetic solutions: Evaluation by nuclear magnetic resonance imaging” Med Phys, 13, 298-303 (1986)
75. Runge VM, Clanton JA, Herzer WA, Gibbs SJ, Price AC, Partain CL, James AE, Jr “Intravascular contrast agents suitable for magnetic resonance imaging” Radiology 153, 171-176 (1984)
76. Lauffer RB, Greif WL, Stark DD, Vincent AC, Saini S, Wedeen VJ, Brady TJ. “Iron-EHPG as an Hepatobiliary MR Contrast Agent: Initial Imaging and Biodistribution Studies” J Comput Assist Tomoger. 9, 431-438 (1985).
77. Jackson LS, Nelson JA Case T A.; Burnham B. “Manganese Protoporphyrin IX: A Potential Intravenous Paramagnetic NMR Contrast Agent: Preliminary Communication” Invest Radiol. 20, 226-229 (1985).
78. Reynolds CH, Annan HN, Beshah K, Huber JH, Shaber SH, Lenkinski RE, Wortman JA “Gadolinium-Loaded Nanoparticles: New Contrast Agents for Magnetic Resonance Imaging" J. Am. Chem. Soc.122, 894-945 (2000).
79. Turner JL, Pan D, Plummer R, Chen Z, Whittaker AK, Wooley KL. “Synthesis of Gadolinium-Labeled Shell-Crosslinked Nanoparticles for Magnetic Resonance Imaging Applications” Adv. Funct. Mater. 15, 1248-1254 (2005)
80. Yang H, Santra S, Walter GA, Holloway PH. “GdIII-Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes ” Adv. Mater, 18, 2890-2894 (2006)
81. Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K.”Gadolinium-based hybrid nanoparticles as a positive MR contrast agent” J. Am Chem Soc. 128, 15090-15091 (2006)
82. Mikulec FV, Kuno M, Bennati M, Hall DA, Griffin RG, Bawendi MG. “Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals” J. Am. Chem. Soc. 122, 2532–2540 (2000).
83. Wang S, Jarrett BR, Kauzlarich SM, Louie AY. “Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging” J. Am. Chem. Soc. 129, 3848–3856 (2007).
84. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa C H, de la Rosette J, Weissleder R, “Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer” N. Engl. J. Med. 348, 2491-2499 (2003)
85. Cheng F-Y, Su C-H, Yang Y-S, Tsa C-Y, Wu C-L, Wu M-T, Shieh Dar-Bin, YehChen-Sheng “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications” Biomaterials 26, 729-738 (2005).
86. Jun YW, HuhY-M, Choi J-S, Lee J-H, Song H-T, Kim S, Kim S, Yoon S, Kim K-S, Shin J-S, Suh J-S, Cheon J. “Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging” J. Am. Chem. Soc. 127, 5732-5733 (2005)
87. Su C-H, Sheu H-S, Lin C-Y, Huang C-C, Lo Y-W, PuY-C, Weng J-C, Shieh D-B, Chen J-H, Yeh C-S “Nanoshell Magnetic Resonance Imaging Contrast Agents” J. Am. Chem. Soc. 129, 2139-2145 (2007)
88. Chen C-C, Liu Y-C, Wu C-H, Yeh C-C, Su M-T, Wu Y-C “Preparation of Fluorescent Silica Nanotubes and Their Application in Gene Delivery” Adv. Mater. 17, 404-407 (2005).
89. 顧寧, 付德剛, 張海黔, “奈米技術與應用” 滄海書局 (2003)
90. Jang J, Yoon H. “Novel Fabrication of Size-Tunable Silica Nanotubes Using a Reverse- Microemulsion-Mediated Sol–Gel Method” Adv. Mater. 16, 799-802 (2004).
91. Ono Y, Nakashima K, Sano M, KanekiyoY, Inoue K, Hojo J, Shinkai S. “Organic gels are useful as a template for the preparation of hollow fiber silica” Chem. Commun. 14, 1477-1478 (1998).
92. Jung JH, Lee SH, Yoo JS, Yoshida K, Shimizu T, Shinkai S. “Creation of Double Silica Nanotubes by Using Crown-Appended Cholesterol Nanotubes” Chem. Eur. J. 9, 5307-5313 (2003).
93. Ogihara H, Takenaka S, Yamanaka I, Tanabe E, Genseki A, Otsuka K. “Synthesis of SiO2 Nanotubes and Their Application as Nanoscale Reactors” Chem. Mater. 18, 996-1000 (2006)
94. Zygmunt J, Krumeich F, Nesper R. “Novel Silica Nanotubes with a High Aspect Ratio—Synthesis and Structural Characterization” Adv. Mater. 15, 1538-1541 (2003)
95. Meegan JE, Aggeli A, Boden N, Brydson R, Brown AP, Carrick L, Brough AR, Hussain A, Ansell RJ. “Micropixelated Luminescent Nanocrystal Arrays Synthesized by Ion Implantation” Adv. Mater. 16, 31-34 (2004).
96. 林芳新, 董瑞安 “奈米核殼複合粒子的製備及生醫應用” 科儀新知 153 (2006).
97. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. “Nanoengineering of optical resonances” Chem. Phys. Lett. 288, 243-247 (1998).
98. Hu KW, Jhang FY, Su CH, Yeh CS. “Fabrication of Gd2O(CO3)2.H2O/silica/gold hybrid particles as a bifunctional agent for MR imaging and photothermal destruction of cancer cells” J. Mater. Chem. 19, 2147-2153 (2009).
99. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP. “Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots” J. Phys. Chem. B. 105, 8861–8871 (2001).
100. Leng Y, Sato K, Shi Y, Li J-G, Ishigaki T, Yoshida T, Kamiya H.“Oxidation-Resistant Silica Coating on Gas-Phase-Reduced Iron Nanoparticles and Influence on Magnetic Properties” J Phys Chem C 113, 16681-16685 (2009)
101. Yugang S, Xia Y “Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes” Anal. Chem. 74, 5297-5305 (2002).
102. Wong MS, Cha JN, Deming TJ, Stucky GD. “Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides” Nano Lett. 2, 583-587 (2002).
103. Hu KW, Huang CC, Hwu JR, Su WC, Shieh DB, Yeh CS. “A New Photothermal Therapeutic Agent: Core-Free Nanostructured AuxAg1-x Dendrites” Chem. Eur. J. 14, 2956-2964 (2008).
104. Pu YC, Hwu JR, Su WC, Shieh DB, Tzeng YH, Yeh CS. "A Water Dissolvable Sodium Sulfate Nanowires as a Versatile Template for the Synthesis of Polyelectrolyte and Metal-Based Nanotubes" J. Am. Chem. Soc. 128, 11606-11611 (2006).
105. Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo, LW “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution” Adv. Funct. Mater. 19, 215-222 (2009).
106. Santos IP, Juste JP, Marzán ML. “Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods” Chem. Mater. 18, 2465-2467 (2006).
107. Rossi LM, Shi L, Quina FH, Rosenzweig Z. “Stöber Synthesis of Monodispersed Luminescent Silica Nanoparticles for Bioanalytical Assays” Langmuir. 21, 4277-4280 (2005).
108. Jakob AM, Schmedake TA. “A Novel Approach to Monodisperse, Luminescent Silica Spheres” Chem. Mater. 18, 3173-3175 (2006).
109. Green H, Le P, Grey J, Au T, Sailor J. “White Phosphors from a Silicate-Carboxylate Sol-Gel Precursor That Lack Metal Activator Ions” Science 276, 1826-1828 (1997).
110. Ho C, Hitchens TK “A Non-Invasive Approach to Detecting Organ Rejection by MRI: Monitoring the Accumulation of Immune Cells At the Transplanted Organ” Curr. Pharm. Biotechnol. 5, 551-566 (2004).
111. Natanzon A, Aletras AH, Hsu LY, Arai AE “Determining Canine Myocardial Area at Risk with Manganese-enhanced MR Imaging” Radiology, 236, 859-866 (2005).
112. Ahn JH, Yoo CI, .Lee CR, Lee JH, Lee H, Kim CY, Park, JK, Sakai T, Yoon CS, Kim Y. “Calcification Mimicking Manganese-Induced Increased Signal Intensities in T1-Weighted MR Images in a Patient Taking Herbal Medicine: Case Report” Neurotoxicology 24, 835-838 (2003).
113. Jackson GE, Byrne MJ, Blekkenhorst G, Hendry AJ “Chromium-cage complex as contrast agent in MR imaging-biodistribution studies of the [57Co]cobalt analogue" Int. J. Rad. Appl. Instrum. B 18, 855-858 (1991).
114. Aime S, Crich SG, Gianolio E, Giovenzana GB, Tei L, Terreno E. “High sensitivity lanthanide(III) based probes for MR-medical imaging” Coord. Chem. Rev. 250, 1562-1579 (2006).
115. Fossheim S, Saebo KB, Fahlvik AK, Rongved P, Klaveness J. “Low molecular weight lanthanide contrast agents: In vitro studies of mechanisms of action” J. Magn. Reson. Imaging 7, 251-257 (1997).
116. Reynolds CH, Annan HN, Beshah K, Huber JH, Shaber SH, Lenkinski RE, Wortman JA “Gadolinium-Loaded Nanoparticles: New Contrast Agents for Magnetic Resonance Imaging” J. Am. Chem. Soc. 122, 8940-8945 (2000).
117. Lin YS, Hung Y, Su JK, Lee R, Chang C, Lin ML, Mou CY. “Gadolinium(III)- Incorporated Nanosized Mesoporous Silica as Potential Magnetic Resonance Imaging Contrast Agents” J. Phys. Chem. B, 108, 15608-15611 (2004).
118. Turner JL, Pan D, Plummer R, Chen Z, Whittaker AK, Wooley KL “Synthesis of Gadolinium-Labeled Shell-Crosslinked Nanoparticles for Magnetic Resonance Imaging Applications” Adv. Funct. Mater. 15, 1248-1254 (2005).
119. Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgil BM, Mericle RA. “Synthesis and Characterization of Fluorescent, Radio-Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications” Adv. Mater. 17, 2165-2169 (2005).
120. Rieter WJ, Taylor KML, An H, Lin W. “Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents” J. Am. Chem. Soc. 128, 9024-9025 (2006).
121. Bridot JL, Faure AC, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O. “Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for in Vivo Imaging” J. Am. Chem. Soc. 129, 5076-5084 (2007).
122. Werner PE. In “Structure Determination from Powder iffraction Data” Divid WIF, Shankland K, McCusker LB, Baerlocher Ch., Eds.; IUCr Monographs 13, Oxford University Press. 118-134 (2002)..
123. Feng W-J, Zhou G-P, Liu Z-B, XuY. “Nd(CO3)(OH) from single-crystal data” Acta Cryst. E63, i174 (2007).
124. Sheu H-S, Shih W-J ,.Chuang W-T, Li I-F, Yeh C-S “Crystal Structure and Phase Transitions of Gd(CO3)OH Studied by Synchrotron Powder Diffraction” J. Chin. Chem. Soc. 57, 938-945 (2010).
125. ShawW. H. R., Bordeaux J. J., “The Decomposition of Urea in Aqueous Media” J. Am. Chem. Soc. 77, 4729-4733 (1955).
126. Evanics F, Diamente PR, van Veggel FCJM, Stanisz GJ, Prosser RS. “Water-Soluble GdF3 and GdF3/LaF3 Nanoparticles Physical Characterization and NMR Relaxation Properties” Chem. Mater. 18, 2499-2505 (2006).
127. Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K, “Gadolinium-Based Hybrid Nanoparticles as a Positive MR Contrast Agent” J. Am. Chem. Soc. 128, 15090-15091 (2006).
128. Rieter WJ, Taylor KML, AnH , Lin W, Lin W. “Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents” J. Am. Chem. Soc. 128, 9024- 9025 (2006).
129. Huang C-C, Liu T-Y, Su C-H, Lo Y-W, Chen J-H, Yeh C-S. “Superparamagnetic Hollow and Paramagnetic Porous Gd2O3 Particles” Chem. Mater. 20, 3840–3848 (2008).
130. Li I-F, Su C-H, Sheu H-S, Chiu H.-C, Lo, Y-W Lin W-T, Chen J-H, Yeh C-S. “Gd2O(CO3)2 • H2O Particles and the Corresponding Gd2O3: Synthesis and Applications of Magnetic Resonance Contrast Agents and Template Particles for Hollow Spheres and Hybrid Composites” Adv. Funct. Mater. 18, 766–776 (2008).
131. Huang C-C, Huang W, Su C-H, Feng C-N, Kuoa W-S, Yeh C-S. “A general approach to silicatenanoshells: gadolinium silicate and gadolinium silicate:europium nanoshells for dual-modality optical and MR imaging” Chem. Commun. 3360–3362 (2009).
132. Wang S, Jarrett BR, Kauzlarich SM, Louie AY. “Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging” J. Am. Chem. Soc. 129, 3848-3856 (2007).
133. Kang T, Sung J, Shim W, Moon H, Cho J, Jo Y, Lee W, Kim B. “Synthesis and Magnetic Properties of Single-Crystalline Mn/Fe-Doped and Co-doped ZnS Nanowires and Nanobelts” J. Phys. Chem. C 113, 5352–5357 (2009).
134. Meulenberg RW, van Buuren T, Hanif KM, Willey TM, Strouse GF, Terminello LJ, “Structure and Composition of Cu-Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy” Nano Lett. 4, 2277-2285 (2004).
135. Singh K, Kumar S, Verma NK, Bhatti HS. “Photoluminescence properties of Eu3+-doped Cd1− x Znx S quantum dots” J Nanopart Res. 11, 1017–1021 (2009).
136. Chengelis DA, Yingling AM, Badger PD, Shade CM, Petoud S. “Incorporating Lanthanide Cations with Cadmium Selenide Nanocrystals: A Strategy to Sensitize and Protect Tb(III)” J. Am. Chem. Soc. 127, 16752-16753 (2005).
137. Hua R, Niu J, Li M, Yu T, Li W. “Electroluminescent properties of device based on ZnS:Tb/CdS core-shell nanocrystals” Chem. Phys. Lett. 419, 269-272 (2006).
138. Blum AS, Moore MH and Ratna BR. “Quantum Dot Fluorescence as a Function of Alkyl Chain Length in Aqueous Environments” Langmuir. 24, 17, 9194-9197 (2008)
139. Raola OE and Strouse GF. “Synthesis and Characterization of Eu-Doped Cadmium Selenide Nanocrystals” Nano Lett. 2, 12, 1443-1447 (2002)