| 研究生: |
齊嘉鈺 Chi, Chia-Yu |
|---|---|
| 論文名稱: |
社區性抗甲氧苯青黴素金黃色葡萄球菌在皮膚及軟組織感染的致病機轉: Panton-Valentine Leukocidin的角色 Pathogenesis of Community-Associated Methicillin-Resistant Staphylococcus aureus in Skin and Soft Tissue Infection: The Role of Panton-Valentine Leukocidin |
| 指導教授: |
劉清泉
Liu, Ching-Chuan 林秋烽 Lin, Chiou-Feng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 核內體 、角質細胞 、Panton-Valentine 殺白細胞素 、金黃色葡萄球菌 |
| 外文關鍵詞: | endosome, keratinocyte, Panton-Valentine leukocidin, Staphylococcus aureus |
| 相關次數: | 點閱:148 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金黃色葡萄球菌是造成人類感染的重要原因,而且其所引起的臨床症狀嚴重度差異非常大。另一方面,由於抗藥性的問題日益嚴重,社區性抗甲氧苯青黴素金黃色葡萄球菌造成的皮膚及軟組織感染,在最近十年內,已然成為全世界一個相當重要且棘手的問題。社區性抗甲氧苯青黴素金黃色葡萄球菌造成感染及流行原因極有可能與其所表現的毒性因子有關。根據流行病學的報告顯示,會引起皮膚及軟組織感染的社區性抗甲氧苯青黴素金黃色葡萄球菌菌株幾乎都會表現一種特有的毒性因子,稱為Panton-Valentine 殺白細胞素 (Panton-Valentine leukocidin,PVL)。但是過去的研究報告大多僅侷限於流行病學的觀察,而關於PVL在社區性抗甲氧苯青黴素金黃色葡萄球菌所引起皮膚及軟組織感染中的重要性,我們所知道的卻是非常有限。本論文中,我利用台灣最常見造成皮膚及軟組織感染,同時會表現PVL的社區性抗甲氧苯青黴素金黃色葡萄球菌,和根據該菌株,利用基因重建方式,所構築的PVL剔除突變株以及PVL再表現的衍生株,探討PVL在社區性抗甲氧苯青黴素金黃色葡萄球菌感染人類角質細胞以及兔子的動物實驗中,致病機制上的重要角色。結果發現,無論是帶有PVL的社區性抗甲氧苯青黴素金黃色葡萄球菌野生株,或是PVL剔除突變株,都會在感染角質細胞1小時內附著在宿主細胞表面,隨後被吞入核內體 (endosome)內。然而,在感染2小時後,相較於PVL剔除突變株,表現PVL的社區性抗甲氧苯青黴素金黃色葡萄球菌會明顯有效地破壞核內體,逃脫進入細胞質中,並且開始在胞內進行複製。此外,與感染PVL剔除突變株的細胞相比,此時感染帶有PVL的社區性抗甲氧苯青黴素金黃色葡萄球菌的角質細胞會被觸發而大量製造活性含氧物種 (reactive oxygen species, ROS)。感染6小時後,帶有PVL的社區性抗甲氧苯青黴素金黃色葡萄球菌會導致更多與caspase活化路徑相關的角質細胞凋亡發生。進一步,在兔子的感染模式中也可以觀察到,在感染皮內一週後,帶有PVL的社區性抗甲氧苯青黴素金黃色葡萄球菌,會比PVL剔除突變株造成更大範圍的皮膚及軟組織損傷,以及細胞凋亡發生。並且,相較於PVL剔除突變株的感染部位,感染帶有PVL的社區性抗甲氧苯青黴素金黃色葡萄球菌的皮膚組織,會大量表現促發炎反應相關的細胞素、趨化素或是受體。這些結果證明,藉由協助菌株破壞宿主細胞核內體、提早進入細胞質中、於胞內大量複製、觸發ROS的產生、引發細胞凋亡,以及促使細胞大量表現促發炎相關的細胞素,PVL確實是社區性抗甲氧苯青黴素金黃色葡萄球菌導致壞死性皮膚感染的重要毒性因子。這些PVL對於社區性抗甲氧苯青黴素金黃色葡萄球菌在人類角質細胞和動物的感染模式中的重要性,證實PVL不僅僅是社區性抗甲氧苯青黴素金黃色葡萄球菌的一個標記,它更可能是未來控制感染部位不當的發炎反應和細胞死亡,一個相當有希望的治療標的。
Staphylococcus aureus is a leading cause of human infections. The pathogen is able to cause a wide range of diseases of varied severity. Skin and soft tissue infections (SSTIs) caused by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) have emerged as major health problems throughout the world. CA-MRSA infection has been attributed to several virulence factors. Epidemiological reports demonstrate that most SSTI CA-MRSA strains produce Panton-Valentine leukocidin (PVL), but its contribution to CA-MRSA pathogenesis is poorly defined. In this thesis I used an endemic PVL-positive SSTI-causing CA-MRSA strain from Taiwan, together with an isogenic PVL-knockout mutant (Δpvl) and complemented PVL-positive derivative to evaluate the role of PVL in the pathogenesis of CA-MRSA in the RHEK-1 human keratinocyte cell line and a rabbit skin infection model. I found that both PVL-positive CA-MRSA and isogenic Δpvl strains attached and were engulfed into endosomes of RHEK-1 cells within 1h following infection. However, by 2h post-infection PVL-positive CA-MRSA more effectively disrupted endosomes, escaped into the cytoplasm, and replicated intracellularly. Additionally, PVL-positive CA-MRSA induced higher reactive oxygen species (ROS) production than the isogenic Δpvl mutant strains after 2h of infection. By 6h post-infection the PVL-positive strain caused significantly more caspase-dependent keratinocyte apoptosis than the isogenic Δpvl mutant. In rabbit infection model, one week following infection the wild type strain produced significantly more widespread lesions and cell apoptosis than the isogenic Δpvl mutant. Moreover, the expressions of mRNA of proinflammatory cytokines, chemokines, and receptors at the skin lesions were significantly increased by infected with wild type PVL-positive CA-MRSA isolate than the isogenic Δpvl mutant. These findings indicate that PVL is an important virulence factor that enables CA-MRSA to produce necrotizing skin infections by allowing the bacteria to escape from endosomes, replicate intracellularly, trigger ROS production, induce apoptosis, and increase the expression of proinflammatory mediators. The significant contribution of PVL to CA-MRSA virulence in both human keratinocytes and animal infection models suggests that PVL is not only a marker of CA-MRSA, but also a potential therapeutic target to control the inappropriate inflammation and cell death at the infection sites.
1. Azad, M.B., Chen, Y., and Gibson, S.B. (2009). Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxidants & redox signaling 11, 777-790.
2. Baba-Moussa, L., Sina, H., Scheftel, J.M., Moreau, B., Sainte-Marie, D., Kotchoni, S.O., Prevost, G., and Couppie, P. (2011). Staphylococcal Panton-Valentine leucocidin as a major virulence factor associated to furuncles. PLoS ONE 6, e25716.
3. Babich, H., Zuckerbraun, H.L., Wurzburger, B.J., Rubin, Y.L., Borenfreund, E., and Blau, L. (1996). Benzoyl peroxide cytotoxicity evaluated in vitro with the human keratinocyte cell line, RHEK-1. Toxicology 106, 187-196.
4. Badiou, C., Dumitrescu, O., George, N., Forbes, A.R., Drougka, E., Chan, K.S., Ramdani-Bouguessa, N., Meugnier, H., Bes, M., Vandenesch, F., et al. (2010). Rapid detection of Staphylococcus aureus Panton-Valentine leukocidin in clinical specimens by enzyme-linked immunosorbent assay and immunochromatographic tests. J Clin Microbiol 48, 1384-1390.
5. Baggett, H.C., Hennessy, T.W., Rudolph, K., Bruden, D., Reasonover, A., Parkinson, A., Sparks, R., Donlan, R.M., Martinez, P., Mongkolrattanothai, K., et al. (2004). Community-onset methicillin-resistant Staphylococcus aureus associated with antibiotic use and the cytotoxin Panton-Valentine leukocidin during a furunculosis outbreak in rural Alaska. J Infect Dis 189, 1565-1573.
6. Bayles, K.W., Wesson, C.A., Liou, L.E., Fox, L.K., Bohach, G.A., and Trumble, W.R. (1998). Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66, 336-342.
7. Berman, H., Henrick, K., and Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Nat Struct Biol 10, 980.
8. Bernardo, K., Pakulat, N., Fleer, S., Schnaith, A., Utermohlen, O., Krut, O., Muller, S., and Kronke, M. (2004). Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother 48, 546-555.
9. Bourigault, C., Corvec, S., Brulet, V., Robert, P.Y., Mounoury, O., Goubin, C., Boutoille, D., Hubert, B., Bes, M., Tristan, A., et al. (2014). Outbreak of Skin Infections Due to Panton-Valentine Leukocidin-Positive Methicillin-Susceptible Staphylococcus aureus in a French Prison in 2010-2011. PLoS currents 6.
10. Boyce, J.M., Havill, N.L., Kohan, C., Dumigan, D.G., and Ligi, C.E. (2004). Do infection control measures work for methicillin-resistant Staphylococcus aureus? Infect Control Hosp Epidemiol 25, 395-401.
11. Brown, E.L., Dumitrescu, O., Thomas, D., Badiou, C., Koers, E.M., Choudhury, P., Vazquez, V., Etienne, J., Lina, G., Vandenesch, F., et al. (2009). The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 15, 156-164.
12. Bubeck Wardenburg, J., Bae, T., Otto, M., Deleo, F.R., and Schneewind, O. (2007). Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13, 1405-1406.
13. Bubeck Wardenburg, J., Palazzolo-Ballance, A.M., Otto, M., Schneewind, O., and DeLeo, F.R. (2008). Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis 198, 1166-1170.
14. Burlak, C., Hammer, C.H., Robinson, M.A., Whitney, A.R., McGavin, M.J., Kreiswirth, B.N., and Deleo, F.R. (2007). Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cellular microbiology 9, 1172-1190.
15. Cars, O. (1990). Pharmacokinetics of antibiotics in tissues and tissue fluids: a review. Scand J Infect Dis Suppl 74, 23-33.
16. Chakraborty, A., and Pawelek, J. (1993). MSH receptors in immortalized human epidermal keratinocytes: a potential mechanism for coordinate regulation of the epidermal-melanin unit. J Cell Physiol 157, 344-350.
17. Chen, C.J., Huang, Y.C., Chiu, C.H., Su, L.H., and Lin, T.Y. (2005). Clinical features and genotyping analysis of community-acquired methicillin-resistant Staphylococcus aureus infections in Taiwanese children. Pediatr Infect Dis J 24, 40-45.
18. Chen, Y., Smith, M.R., Thirumalai, K., and Zychlinsky, A. (1996). A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J 15, 3853-3860.
19. Cheung, G.Y., Wang, R., Khan, B.A., Sturdevant, D.E., and Otto, M. (2011). Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun 79, 1927-1935.
20. Chi, C.Y., Wang, S.M., Lin, H.C., and Liu, C.C. (2006). A clinical and microbiological comparison of Staphylococcus aureus toxic shock and scalded skin syndromes in children. Clin Infect Dis 42, 181-185.
21. Chini, V., Petinaki, E., Foka, A., Paratiras, S., Dimitracopoulos, G., and Spiliopoulou, I. (2006). Spread of Staphylococcus aureus clinical isolates carrying Panton-Valentine leukocidin genes during a 3-year period in Greece. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 12, 29-34.
22. Couppie, P., Cribier, B., and Prevost, G. (1994). Leukocidin from Staphylococcus aureus and cutaneous infections: an epidemiologic study. Arch Dermatol 130, 1208-1209.
23. Coyle, E.A., Cha, R., and Rybak, M.J. (2003). Influences of linezolid, penicillin, and clindamycin, alone and in combination, on streptococcal pyrogenic exotoxin a release. Antimicrob Agents Chemother 47, 1752-1755.
24. Cribier, B., Prevost, G., Couppie, P., Finck-Barbancon, V., Grosshans, E., and Piemont, Y. (1992). Staphylococcus aureus leukocidin: a new virulence factor in cutaneous infections? An epidemiological and experimental study. Dermatology 185, 175-180.
25. Cruz, C.M., Rinna, A., Forman, H.J., Ventura, A.L., Persechini, P.M., and Ojcius, D.M. (2007). ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282, 2871-2879.
26. Cunha, L.D., and Zamboni, D.S. (2013). Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. Frontiers in cellular and infection microbiology 3, 76.
27. Davis, S.L., Rybak, M.J., Amjad, M., Kaatz, G.W., and McKinnon, P.S. (2006). Characteristics of patients with healthcare-associated infection due to SCCmec type IV methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 27, 1025-1031.
28. DeLeo, F.R., and Chambers, H.F. (2009). Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119, 2464-2474.
29. DeLeo, F.R., Otto, M., Kreiswirth, B.N., and Chambers, H.F. (2010). Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557-1568.
30. Deretic, V. (2010). Autophagy in infection. Curr Opin Cell Biol 22, 252-262.
31. Diep, B.A., Carleton, H.A., Chang, R.F., Sensabaugh, G.F., and Perdreau-Remington, F. (2006). Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J Infect Dis 193, 1495-1503.
32. Diep, B.A., Chambers, H.F., Graber, C.J., Szumowski, J.D., Miller, L.G., Han, L.L., Chen, J.H., Lin, F., Lin, J., Phan, T.H., et al. (2008a). Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med 148, 249-257.
33. Diep, B.A., Chan, L., Tattevin, P., Kajikawa, O., Martin, T.R., Basuino, L., Mai, T.T., Marbach, H., Braughton, K.R., Whitney, A.R., et al. (2010). Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc Natl Acad Sci U S A 107, 5587-5592.
34. Diep, B.A., Palazzolo-Ballance, A.M., Tattevin, P., Basuino, L., Braughton, K.R., Whitney, A.R., Chen, L., Kreiswirth, B.N., Otto, M., DeLeo, F.R., et al. (2008b). Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS ONE 3, e3198.
35. Diep, B.A., Sensabaugh, G.F., Somboonna, N., Carleton, H.A., and Perdreau-Remington, F. (2004). Widespread skin and soft-tissue infections due to two methicillin-resistant Staphylococcus aureus strains harboring the genes for Panton-Valentine leucocidin. J Clin Microbiol 42, 2080-2084.
36. Dumitrescu, O., Boisset, S., Badiou, C., Bes, M., Benito, Y., Reverdy, M.E., Vandenesch, F., Etienne, J., and Lina, G. (2007). Effect of antibiotics on Staphylococcus aureus producing Panton-Valentine leukocidin. Antimicrob Agents Chemother 51, 1515-1519.
37. Eguia, J.M., and Chambers, H.F. (2003). Community-acquired Methicillin-resistant Staphylococcus aureus: Epidemiology and Potential Virulence Factors. Current infectious disease reports 5, 459-466.
38. Fang, F.C. (2011). Antimicrobial actions of reactive oxygen species. mBio 2, e00101-00111.
39. Francis, J.S., Doherty, M.C., Lopatin, U., Johnston, C.P., Sinha, G., Ross, T., Cai, M., Hansel, N.N., Perl, T., Ticehurst, J.R., et al. (2005). Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin Infect Dis 40, 100-107.
40. Genestier, A.L., Michallet, M.C., Prevost, G., Bellot, G., Chalabreysse, L., Peyrol, S., Thivolet, F., Etienne, J., Lina, G., Vallette, F.M., et al. (2005). Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J Clin Invest 115, 3117-3127.
41. Giese, B., Dittmann, S., Paprotka, K., Levin, K., Weltrowski, A., Biehler, D., Lam, T.T., Sinha, B., and Fraunholz, M.J. (2009). Staphylococcal alpha-toxin is not sufficient to mediate escape from phagolysosomes in upper-airway epithelial cells. Infect Immun 77, 3611-3625.
42. Gillet, Y., Issartel, B., Vanhems, P., Fournet, J.C., Lina, G., Bes, M., Vandenesch, F., Piemont, Y., Brousse, N., Floret, D., et al. (2002). Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359, 753-759.
43. Grone, A. (2002). Keratinocytes and cytokines. Vet Immunol Immunopathol 88, 1-12.
44. Gwinn, M.R., and Vallyathan, V. (2006). Respiratory burst: role in signal transduction in alveolar macrophages. J Toxicol Environ Health B Crit Rev 9, 27-39.
45. Herold, B.C., Immergluck, L.C., Maranan, M.C., Lauderdale, D.S., Gaskin, R.E., Boyle-Vavra, S., Leitch, C.D., and Daum, R.S. (1998). Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279, 593-598.
46. Hybiske, K., and Stephens, R.S. (2008). Exit strategies of intracellular pathogens. Nature reviews Microbiology 6, 99-110.
47. Isberg, R.R., and Falkow, S. (1985). A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317, 262-264.
48. Jann, N.J., Schmaler, M., Ferracin, F., and Landmann, R. (2011). TLR2 enhances NADPH oxidase activity and killing of Staphylococcus aureus by PMN. Immunol Lett 135, 17-23.
49. Kaneko, J., and Kamio, Y. (2004). Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem 68, 981-1003.
50. Karauzum, H., Adhikari, R.P., Sarwar, J., Devi, V.S., Abaandou, L., Haudenschild, C., Mahmoudieh, M., Boroun, A.R., Vu, H., Nguyen, T., et al. (2013). Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model. PLoS ONE 8, e65384.
51. Kintarak, S., Whawell, S.A., Speight, P.M., Packer, S., and Nair, S.P. (2004). Internalization of Staphylococcus aureus by human keratinocytes. Infect Immun 72, 5668-5675.
52. Kirkegaard, K., Taylor, M.P., and Jackson, W.T. (2004). Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nature reviews Microbiology 2, 301-314.
53. Klevens, R.M., Edwards, J.R., Tenover, F.C., McDonald, L.C., Horan, T., and Gaynes, R. (2006). Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003. Clin Infect Dis 42, 389-391.
54. Kobayashi, S.D., Malachowa, N., Whitney, A.R., Braughton, K.R., Gardner, D.J., Long, D., Bubeck Wardenburg, J., Schneewind, O., Otto, M., and Deleo, F.R. (2011). Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis 204, 937-941.
55. Kohler, J., Breitbach, K., Renner, C., Heitsch, A.K., Bast, A., van Rooijen, N., Vogelgesang, S., and Steinmetz, I. (2011). NADPH-oxidase but not inducible nitric oxide synthase contributes to resistance in a murine Staphylococcus aureus Newman pneumonia model. Microbes and infection / Institut Pasteur 13, 914-922.
56. Labandeira-Rey, M., Couzon, F., Boisset, S., Brown, E.L., Bes, M., Benito, Y., Barbu, E.M., Vazquez, V., Hook, M., Etienne, J., et al. (2007). Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315, 1130-1133.
57. Levine, B., Mizushima, N., and Virgin, H.W. (2011). Autophagy in immunity and inflammation. Nature 469, 323-335.
58. Li, M., Cheung, G.Y., Hu, J., Wang, D., Joo, H.S., Deleo, F.R., and Otto, M. (2010). Comparative analysis of virulence and toxin expression of global community-associated methicillin-resistant Staphylococcus aureus strains. J Infect Dis 202, 1866-1876.
59. Lina, G., Piemont, Y., Godail-Gamot, F., Bes, M., Peter, M.O., Gauduchon, V., Vandenesch, F., and Etienne, J. (1999). Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29, 1128-1132.
60. Ling, L.U., Tan, K.B., Lin, H., and Chiu, G.N. (2011). The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell death & disease 2, e129.
61. Lipinska, U., Hermans, K., Meulemans, L., Dumitrescu, O., Badiou, C., Duchateau, L., Haesebrouck, F., Etienne, J., and Lina, G. (2011). Panton-Valentine leukocidin does play a role in the early stage of Staphylococcus aureus skin infections: a rabbit model. PLoS ONE 6, e22864.
62. Loffler, B., Hussain, M., Grundmeier, M., Bruck, M., Holzinger, D., Varga, G., Roth, J., Kahl, B.C., Proctor, R.A., and Peters, G. (2010). Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6, e1000715.
63. Lowy, F.D. (1998). Staphylococcus aureus infections. N Engl J Med 339, 520-532.
64. Lowy, F.D. (2000). Is Staphylococcus aureus an intracellular pathogen? Trends Microbiol 8, 341-343.
65. Marcatili, A., Cipollaro de l'Ero, G., Galdiero, M., Folgore, A., and Petrillo, G. (1997). TNF-alpha, IL-1 alpha, IL-6 and ICAM-1 expression in human keratinocytes stimulated in vitro with Escherichia coli heat-shock proteins. Microbiology 143 ( Pt 1), 45-53.
66. Mempel, M., Schnopp, C., Hojka, M., Fesq, H., Weidinger, S., Schaller, M., Korting, H.C., Ring, J., and Abeck, D. (2002). Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin-independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br J Dermatol 146, 943-951.
67. Miles, G., Movileanu, L., and Bayley, H. (2002). Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci 11, 894-902.
68. Miller, L.G., Perdreau-Remington, F., Rieg, G., Mehdi, S., Perlroth, J., Bayer, A.S., Tang, A.W., Phung, T.O., and Spellberg, B. (2005). Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 352, 1445-1453.
69. Miller, L.S., Pietras, E.M., Uricchio, L.H., Hirano, K., Rao, S., Lin, H., O'Connell, R.M., Iwakura, Y., Cheung, A.L., Cheng, G., et al. (2007). Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol 179, 6933-6942.
70. Moran, G.J., Krishnadasan, A., Gorwitz, R.J., Fosheim, G.E., McDougal, L.K., Carey, R.B., and Talan, D.A. (2006). Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355, 666-674.
71. Mukhtar, T.A., and Wright, G.D. (2005). Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev 105, 529-542.
72. Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science 306, 1037-1040.
73. Noda, M., Kato, I., Matsuda, F., and Hirayama, T. (1981). Mode of action of staphylococcal leukocidin: relationship between binding of 125I-labeled S and F components of leukocidin to rabbit polymorphonuclear leukocytes and leukocidin activity. Infect Immun 34, 362-367.
74. Orscheln, R.C., Hunstad, D.A., Fritz, S.A., Loughman, J.A., Mitchell, K., Storch, E.K., Gaudreault, M., Sellenriek, P.L., Armstrong, J.R., Mardis, E.R., et al. (2009). contribution of genetically restricted, methicillin-susceptible strains to the ongoing epidemic of community-acquired Staphylococcus aureus infections. Clin Infect Dis 49, 536-542.
75. Otto, M. (2010). Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 64, 143-162.
76. Otto, M. (2012). MRSA virulence and spread. Cellular microbiology 14, 1513-1521.
77. Pedelacq, J.D., Maveyraud, L., Prevost, G., Baba-Moussa, L., Gonzalez, A., Courcelle, E., Shepard, W., Monteil, H., Samama, J.P., and Mourey, L. (1999). The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7, 277-287.
78. Popovich, K.J., Weinstein, R.A., and Hota, B. (2008). Are community-associated methicillin-resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin Infect Dis 46, 787-794.
79. Prevost, G., Couppie, P., Prevost, P., Gayet, S., Petiau, P., Cribier, B., Monteil, H., and Piemont, Y. (1995). Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J Med Microbiol 42, 237-245.
80. Rasigade, J.P., Laurent, F., Lina, G., Meugnier, H., Bes, M., Vandenesch, F., Etienne, J., and Tristan, A. (2010). Global distribution and evolution of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus, 1981-2007. J Infect Dis 201, 1589-1597.
81. Ritz, N., and Curtis, N. (2012). The role of Panton-Valentine leukocidin in Staphylococcus aureus musculoskeletal infections in children. Pediatr Infect Dis J 31, 514-518.
82. Saleh-Mghir, A., Dumitrescu, O., Dinh, A., Boutrad, Y., Massias, L., Martin, E., Vandenesch, F., Etienne, J., Lina, G., and Cremieux, A.C. (2012). Ceftobiprole efficacy in vitro against Panton-Valentine leukocidin production and in vivo against community-associated methicillin-resistant Staphylococcus aureus osteomyelitis in rabbits. Antimicrob Agents Chemother 56, 6291-6297.
83. Schlievert, P.M., and Kelly, J.A. (1984). Clindamycin-induced suppression of toxic-shock syndrome--associated exotoxin production. J Infect Dis 149, 471.
84. Schnaith, A., Kashkar, H., Leggio, S.A., Addicks, K., Kronke, M., and Krut, O. (2007). Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282, 2695-2706.
85. Seybold, U., Kourbatova, E.V., Johnson, J.G., Halvosa, S.J., Wang, Y.F., King, M.D., Ray, S.M., and Blumberg, H.M. (2006). Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis 42, 647-656.
86. Shiraki, Y., Ishibashi, Y., Hiruma, M., Nishikawa, A., and Ikeda, S. (2006). Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol 55, 1175-1185.
87. Shukla, S.K., Stemper, M.E., Ramaswamy, S.V., Conradt, J.M., Reich, R., Graviss, E.A., and Reed, K.D. (2004). Molecular characteristics of nosocomial and Native American community-associated methicillin-resistant Staphylococcus aureus clones from rural Wisconsin. J Clin Microbiol 42, 3752-3757.
88. Sinha, B., and Fraunholz, M. (2010). Staphylococcus aureus host cell invasion and post-invasion events. Int J Med Microbiol 300, 170-175.
89. Sinha, B., and Herrmann, M. (2005). Mechanism and consequences of invasion of endothelial cells by Staphylococcus aureus. Thromb Haemost 94, 266-277.
90. Smith, J., Manoranjan, J., Pan, M., Bohsali, A., Xu, J., Liu, J., McDonald, K.L., Szyk, A., LaRonde-LeBlanc, N., and Gao, L.Y. (2008). Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect Immun 76, 5478-5487.
91. Soong, G., Chun, J., Parker, D., and Prince, A. (2012). Staphylococcus aureus activation of caspase 1/calpain signaling mediates invasion through human keratinocytes. J Infect Dis 205, 1571-1579.
92. Staali, L., Monteil, H., and Colin, D.A. (1998). The staphylococcal pore-forming leukotoxins open Ca2+ channels in the membrane of human polymorphonuclear neutrophils. J Membr Biol 162, 209-216.
93. Sun, K., and Metzger, D.W. (2014). Influenza Infection Suppresses NADPH Oxidase-Dependent Phagocytic Bacterial Clearance and Enhances Susceptibility to Secondary Methicillin-Resistant Staphylococcus aureus Infection. J Immunol.
94. Takano, T., Higuchi, W., Otsuka, T., Baranovich, T., Enany, S., Saito, K., Isobe, H., Dohmae, S., Ozaki, K., Takano, M., et al. (2008). Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 52, 837-845.
95. Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H., and Swaminathan, B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233-2239.
96. Thomas, D.S., Ingham, E., Bojar, R.A., and Holland, K.T. (2008). In vitro modulation of human keratinocyte pro- and anti-inflammatory cytokine production by the capsule of Malassezia species. FEMS Immunol Med Microbiol 54, 203-214.
97. Toma, C., Higa, N., Koizumi, Y., Nakasone, N., Ogura, Y., McCoy, A.J., Franchi, L., Uematsu, S., Sagara, J., Taniguchi, S., et al. (2010). Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling. J Immunol 184, 5287-5297.
98. Vandenesch, F., Naimi, T., Enright, M.C., Lina, G., Nimmo, G.R., Heffernan, H., Liassine, N., Bes, M., Greenland, T., Reverdy, M.E., et al. (2003). Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9, 978-984.
99. Voyich, J.M., Otto, M., Mathema, B., Braughton, K.R., Whitney, A.R., Welty, D., Long, R.D., Dorward, D.W., Gardner, D.J., Lina, G., et al. (2006). Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis 194, 1761-1770.
100. Vuong, C., Gerke, C., Somerville, G.A., Fischer, E.R., and Otto, M. (2003). Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188, 706-718.
101. Wang, C.C., Lo, W.T., Chu, M.L., and Siu, L.K. (2004). Epidemiological typing of community-acquired methicillin-resistant Staphylococcus aureus isolates from children in Taiwan. Clin Infect Dis 39, 481-487.
102. Wong, K.W., and Jacobs, W.R., Jr. (2011). Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cellular microbiology 13, 1371-1384.
103. Yamamoto, T., Nishiyama, A., Takano, T., Yabe, S., Higuchi, W., Razvina, O., and Shi, D. (2010). Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 16, 225-254.
104. Yoshimori, T. (2004). Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313, 453-458.
105. Zychlinsky, A., Fitting, C., Cavaillon, J.M., and Sansonetti, P.J. (1994). Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest 94, 1328-1332.
106. Zychlinsky, A., Thirumalai, K., Arondel, J., Cantey, J.R., Aliprantis, A.O., and Sansonetti, P.J. (1996). In vivo apoptosis in Shigella flexneri infections. Infect Immun 64, 5357-5365.