| 研究生: |
鍾長榮 Chung, Chang-Jung |
|---|---|
| 論文名稱: |
GPS/INS資訊為基礎之能量管理和飛航姿態與速度指引分析 An Altitude and Velocity Indicating Algorithm Based on GPS/INS Information for Flight Energy Management |
| 指導教授: |
李劍
Li, Jian |
| 共同指導教授: |
王猷順
Wang, Yu-Shun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 飛行路徑 、最佳化 、擬譜法 |
| 外文關鍵詞: | Flight Trajectory, Optimal, Pseudospectral |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為使飛機燃油做最有效的運用,本論文希望透過GPS及INS獲取飛機目前位置與速度資訊,再透過最佳化方法求出最佳飛行速度與高度,在最佳化方法的使用上,主要分為直接法與間接法,二者間最大之不同為直接法會先將問題離散化後再求最佳解,而間接法則為直接將問題利用偏微分的方式求解泛函數的最佳化,在計算較複雜之問題,如:飛行路徑最佳化時,間接法的求解過程須要大量的偏微分計算,導致計算難度提高,此外,間接法對於初始值的品質極為敏感,而直接法利用離散化的方法省去了大量的偏微分計算,且直接法對於初始值的品質較不敏感,故本研究以直接法搭配Matlab作為飛行路徑最佳化之求解方法。
本研究使用飛機質點運動方程式建立飛機運動模型,並比較使用攻角及推力作為控制變數及單純使用推力作為控制變數對於計算最佳飛行軌跡的差異,並針對不同問題設計對應之最佳化性能指標,如:於不同高度下計算最大航程之最佳飛行速度、於不同高度下計算最長航時之最省油飛行速度,以及歸航模式下以最少油耗作爬升、巡航及下降之速度與飛行路徑角計算。
In order to make the most effective use of aircraft fuel, this paper hopes to obtain aircraft position and speed information through GPS/INS, and use the optimization method to find the optimal flight velocity. The optimization method is mainly divided into two types: the direct method and the indirect method. The biggest difference of indirect method and direct method is that the direct method discretizes the problem first and then solves the optimization, and when calculating the complicated problem of flight path optimization, there will be a lot of partial differential calculations in the solution process in the direct method. It will cause the difficulty of calculation and it is difficult to solve, and the direct method is extremely sensitive to the guess of the initial value, so this study chooses the direct method as the solution method for flight path optimization, and solves it with Matlab.
This research will modeling aircraft motion with equation of motion for mass point, and use both thrust and angle of attack as control variable. According to different mission define difference performance index, such as calculate the optimal flight velocity at different altitudes in maximum range, and the most fuel-efficient flight speed at different altitudes during the longest flight time, last is the optimal velocity and flight path angle for climbing, optimal flight velocity for cruising and optimal flight path angle descent with the least fuel consumption in the homing mode.
[1] M. A. CONNOR, "Optimization of a lateral turn at constant height," AIAA Journal, vol. 5, no. 2, pp. 335-338, 1967.
[2] A. E. B. JR. and M. M. LELE, "Minimum fuel lateral turns at constant altitude," AIAA Journal, vol. 7, no. 3, pp. 559-560, 1969.
[3] J. K. HEDRICK and A. E. B. JR., "Three-Dimensional Minimum Fuel Turns for a Supersonic Aircraft," Journal of Aircraft, vol. 9, no. 3, pp. 223-229, 1972, doi: 10.2514/3.58961.
[4] A. E. B. JR., M. N. DESAI, and W. C. HOFFMAN, "Energy-state approximation in performance optimization of supersonicaircraft," Journal of Aircraft, vol. 6, no. 6, pp. 481-488, 1969.
[5] J. W. Burrows, "Fuel optimal trajectory computation," Journal of Aircraft, vol. 19, no. 4, pp. 324-329, 1982.
[6] J. W. Burrows, "Fuel-optimal aircraft trajectories with fixed arrival times," Journal of Guidance, Control, and Dynamics, vol. 6, no. 1, pp. 14-19, 1983, doi: 10.2514/3.19796.
[7] J. García-Heras, M. Soler, and F. J. Sáez, "Collocation Methods to Minimum-Fuel Trajectory Problems with Required Time of Arrival in ATM," Journal of Aerospace Information Systems, vol. 13, no. 7, pp. 243-265, 2016.
[8] C. Canuto, M. Y. Hussaini, A. Quarteroni, and A. Thomas Jr, Spectral methods in fluid dynamics. Springer Science & Business Media, 2012.
[9] S. A. Orszag, "Comparison of Pseudospectral and Spectral Approximation," Studies in Applied Mathematics, vol. 51, no. 3, pp. 253-259, 1972.
[10] J. Vlassenbroeck and R. Van Dooren, "A Chebyshev technique for solving nonlinear optimal control problems," IEEE transactions on automatic control, vol. 33, no. 4, pp. 333-340, 1988.
[11] G. Elnagar, M. A. Kazemi, and M. Razzaghi, "The pseudospectral Legendre method for discretizing optimal control problems," IEEE transactions on Automatic Control, vol. 40, no. 10, pp. 1793-1796, 1995.
[12] I. Ross, C. D'Souza, F. Fahroo, and J. Ross, "A Fast Approach to Multi-Stage Launch Vehicle Trajectory Optimization," in AIAA Guidance, Navigation, and Control Conference and Exhibit.
[13] F. Fahroo and I. M. Ross, "Direct Trajectory Optimization by a Chebyshev Pseudospectral Method," Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 160-166, 2002.
[14] M. F. Soler Arnedo, "Commercial aircraft trajectory planning based on multiphase mixed-integer optimal control," 2013.
[15] L. S. Pontryagin, Mathematical theory of optimal processes. Routledge, 2018.
[16] D. Kraft, "On converting optimal control problems into nonlinear programming problems," in Computational mathematical programming: Springer, 1985, pp. 261-280.
[17] H. G. Bock and K.-J. Plitt, "A multiple shooting algorithm for direct solution of optimal control problems," IFAC Proceedings Volumes, vol. 17, no. 2, pp. 1603-1608, 1984.
[18] T. Tsang, D. Himmelblau, and T. F. Edgar, "Optimal control via collocation and non-linear programming," International Journal of Control, vol. 21, no. 5, pp. 763-768, 1975.
[19] G. T. Huntington, "Advancement and analysis of a Gauss pseudospectral transcription for optimal control problems," Citeseer, 2007.
[20] F. Fahroo and I. M. Ross, "Advances in pseudospectral methods for optimal control," in AIAA guidance, navigation and control conference and exhibit, 2008, p. 7309.
校內:2026-08-11公開