簡易檢索 / 詳目顯示

研究生: 王彥博
Wang, Yen-Po
論文名稱: 多軸運動之耦合效應補償:以定位平台之追蹤與水平校準為例
The Compensation for Coupling-effect in Multi-axis Motion: a Tracking and Levelling Example with Positioning Stages
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 86
中文關鍵詞: 耦合效應補償前饋控制H∞回授控制疊代控制
外文關鍵詞: Coupling-effect compensation, Feedforward control, H∞ feedback control, Iterative control
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要研究目的在於補償多軸運動平台之耦合效應。由於多軸運動平台包含了耦合效應,各個自由度的運動會互相干涉與影響,此現象造成了多軸運動平台之定位誤差。因此,本論文以三軸定位平台為例,提出控制方法補償耦合效應並達到x-y平面之運動追蹤與z軸平面之水平校準。除了利用逆向Preisach模
    型前饋控制改善x-y平面運動之非線性遲滯效應,最佳化前饋控制與H∞回授控制更用來補償因x-y平面運動之耦合效應造成之振動問題;此外,基於逆向運動學之疊代控制用於克服定位平台之z軸運動耦合效應並達到z軸平面之水平校準。實驗結果證明,逆向Preisach模型前饋控制、最佳化前饋控制與H∞回授控制及基於
    逆向運動學之疊代控制能有效補償耦合效應並達到此三軸定位平台之精密追蹤與水平校準。

    The purpose of this thesis is to compensate for the coupling-effect in multi-axis motion. Coupling-effect typically exists in multi-axis positioning stages, and motion of each degree-of-freedom will affect each other and results in positioning errors by the proposed control methods. Therefore, this thesis demonstrates x-y plane tracking and z-axis levelling with a three-axis positioning stage. In particular, the inverse Preisach model feedforward control is used to reduce nonlinearity of hysteresis effect in x- and y-axis axes. Moreover, optimal inversion-based feedforward control and H1 feedback control are used to compensate for the vibration resulted from the coupling-effect. Furthermore, inverse-kinematics based iterative control is implemented to compensate for the coupling-effect in z-axis motion and the parallelism control is achieved. Experiment results show that the proposed control methods can compensate for the coupling-effect and improve the tracking and levelling performance.

    TABLE OF CONTENTS Page List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Challenges of Precision Positioning Control on Piezo-based Positioning Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Bad Effects of Piezo-actuators on Precision Positioning . . . . . . 2 1.2 Dynamic Coupling-effect in Multi-axis Motion . . . . . . . . . . . . . . . . 3 1.3 Parallelism Issue of Two Platforms . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 Compensation for Bad Effects of Piezo-actuators . . . . . . . . . . 4 1.4.2 Compensation for Dynamic Coupling-effect in Multi-axis Motion . 5 1.4.3 Parallelism Control of Two Platforms . . . . . . . . . . . . . . . . 6 1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2: Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Coupling-effects in Dual-axis Piezo-stage . . . . . . . . . . . . . . . . . . . 7 2.2 Parallelism between Two Platforms . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 3: Mechanical Design of Positioning Stages . . . . . . . . . . . . . . . 10 3.1 Dual-axis Piezo-stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Levelling System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 4: Control Scheme and Simulation Results . . . . . . . . . . . . . . . 17 4.1 Modeling of the Dual-axis Piezo-stage . . . . . . . . . . . . . . . . . . . . 18 4.2 Compensation for Hysteresis of Piezo-actuators . . . . . . . . . . . . . . . 20 4.3 Compensation for the Dynamic Coupling-effect in the Dual-axis Piezo-stage 20 4.3.1 Optimal Inversion-based Feedforward Control . . . . . . . . . . . . 22 4.3.2 H∞ Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Parallelism Control of Two Platforms . . . . . . . . . . . . . . . . . . . . 44 4.4.1 Kinematics and Inverse Kinematics . . . . . . . . . . . . . . . . . . 44 4.4.2 Iterative Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 i Chapter 5: Experiment Results and Discussions . . . . . . . . . . . . . . . . . 50 5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.1 Hysteresis Effect Compensation . . . . . . . . . . . . . . . . . . . . 54 5.2.2 Dynamic Coupling-effect Compensation . . . . . . . . . . . . . . . 54 5.2.3 Parallelism Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.1 Coupling-effect in Dual-axis Piezo-stage . . . . . . . . . . . . . . . 64 5.3.2 Coupling-effect in Parallelism Control . . . . . . . . . . . . . . . . 64 Chapter 6: Conclusion and Further work . . . . . . . . . . . . . . . . . . . . . 68 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.1.1 Tracking with dual-axis piezo-stage . . . . . . . . . . . . . . . . . . 68 6.1.2 Parallelism control with levelling system . . . . . . . . . . . . . . . 68 6.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Appendix A: Circuit diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.1 Signal conditioner for sensors . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.2 Signal conditioner for controllers . . . . . . . . . . . . . . . . . . . . . . . 78 Appendix B: Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Appendix C: Engineering Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Appendix D: H∞ controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    [1] K. L. Barton and A. G. Alleyne. A cross-coupled iterative learning control design for precision motion control. IEEE Transactions on Control System Thchnology, 16(6), Nov. 2008.
    [2] C. Marvin H.-M, S. Sirajus, B. Ezzat G, and C. Chen. Adaptive control of sychronization for multi-axis motion system. In In Proceedings of IEEE Southeaston, Mar. 493-497.
    [3] P. J. Ko. Design, manufacturing and control of piezo-stage. Master’s thesis, National Cheng Kung University, 2010.
    [4] Y. Xiao, K. Zhu, and H. C. Liaw. Generalized synchronization control of multi-axis motion systems. Control Engineering Practice, 13:809–819, Jul. 2005.
    [5] CyberOptics Semiconductor. Solving semiconductor equipment leveling problems and establishing process uniformity standards. 2006.
    [6] W. P. Mason. Piezoelectricity, its history and applications. Journal of the Acoustical Society of America, 70:1561–1566, 1981.
    [7] Y. Wu and Q. Zou. Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators. IEEE Transactions on Control Systems
    Technology, 15(5):936–944, Sep. 2007.
    [8] Yuen Kuan Yong, Sumeet S. Aphale, and S. O. Reza Moheimani. Design, identification, and control of a flexure-based xy stage for fast nanoscale positioning. IEEE
    Transactions on Nanotechnology, 8(1):936–944, Jan. 2009.
    [9] J. Yen, L. Chen, and P. Chiu. Line stitching in servo-assisted electron beam lithography system. In Proceedings of IEEE/ASME International Conference on Advanced
    Intelligent Mechatronics, AIM, pages 397–402, Jul. 2011.
    [10] K. K. Leang. Iterative Learning Control of Hysteresis in Piezo-based Nano-positioners: Theory and Application in Atomic Force Microscopes. PhD thesis,University of Washington, 2004.
    [11] D. Croft and S. Devasia. Vibration compensation for high speed scanning tunneling microscopy. Review of Scientific Instruments, 70:4600–4605, Dec. 1999.
    [12] Y. Yan, H. Wang, and Q. Zou. A decoupled inversion-based iterative control approach to multi-axis precision positioning: 3d nanopositioning example. Automatica, 48:167–176, Jan. 2012.
    [13] Y. Feng and B. Chen. Control system of automatically levelling of vehicle-borne radar. Journal of Huazhong University of Science and Technology (Natural Science
    Edition), 32(6):65–68, Jun. 2004.
    [14] H. J. Levinson. Principle of Lithography. SPIE, 2010.
    [15] M. A. van den Brink, J. M. D. Stoeldraijer, and H. F. D. Linders. Overlay and field-by-field leveling in wafer steppers using an advanced metrology system. In Proceedings of Integrated Circuit Metrology, Inspection, and Process Control VI, pages 330–344, 1992.
    [16] D. Hughes and J. T. Wen. Preisach modeling of piezoceramic and shape momory alloy hysteresis. Smart Materials and Structures, 6:287–300, Feb. 1997.
    [17] L. E. Malvern. Introduction to the Mechanics of a Contineous Medium. Prentice Hall, Englewood Cliffs, NJ, 1969.
    [18] G. Schitter, P. Menold, H. F. Knapp, F. Allgo¨wer, and A. Stemmer. High performance feedback for fast scanning atomic force microscopes. Review of Scientific
    Instruments, 72(8), Aug. 2001.
    [19] J. Dong, S. M. Salapaka, and P. M. Ferreira. Robust mimo control of a parallel kinematics nano-positioner for high resolution high bandwidth tracking and repetitive tasks. In IEEE Conference on Decision and Control, pages 4495–4500, Dec. 2007.
    [20] J. S. Dewey and S. Devasia. Experimental and theoretical results in output-
    trajectory redesign for flexible structures. Proceedings of the 35th Conference on Decision and Control, Dec. 1996.
    [21] K. M. Lee. A three-degrees-of-freedom micromotion in-parallel actuated manipulator. IEEE Transactions on Robotics and Automation, 7(5):634–641, Oct. 1991.
    [22] J. Wu, J. Wang, L. Wang, and T. Li. Dynamics and control of a planar 3-dof parallel manipulator with actuation redundancy. Mechanism and Machine Theory, 44:835–849, 2009.
    [23] H. C. Liaw and B. Shirinzadeh. Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation. IEEE/ASME Transactions on Mechatronics, 14(5):517–527, October 2009.
    [24] S. Arnold, P. Pertsch, and K. Spanner. Piezoelectricity Evolution and Future of a Technology, volume 114 of Springer Series in Materials Science, chapter 12. Springer, 2008.
    [25] K. K. Leang and A. J. Fleming. High-speed serial-kinematic spm scanner: Design and drive considerations. Asian Journal of Control, 11(2):114–153, March 2009.
    [26] S. Devasia. Should model-based inverse inputs be used as feedforward under plant uncertainty? IEEE Transactions on Automatic Control, 47(11):1865–1871, Nov. 2002.
    [27] D. Croft, S. Stilson, and S. Devasia. Optimal tracking of piezo-based nanopositioners. Nanotechnology, 10:201–208, 1999.
    [28] Abu Sebastian and Srinivasa M. Salapaka. Design methodologies for robust nano-positioning. IEEE Transactions on Control Systems Technology, 13(6), Nov. 2005.
    [29] K. Zbou and J. C. Doyle. Essentials of Robust and Optimal Control. Prentice Hall, Upper Saddle River, NJ, 1997.
    [30] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. Joh Wiley & Sons, 2001.
    [31] K. Zbou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Upper Saddle River, NJ, 1995.
    [32] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space solutions to standard h2 and h∞ control problems. IEEE Transactions on Autimatic Control,
    34(8), Aug. 1989.
    [33] D.-W. Gu, P. Hr. Petkov, and M. M. Konstantinov. Robust control design with matlab. Springer, 2005.
    [34] B. D. O. Anderson and Y. Liu. Controller reduction: Concepts and approaches.
    IEEE Transactions on Automatic Control, 34(8), Aug. 1989.
    [35] E. Isaacson. Analysis of Numerical Methods. John Wiley & Sons, 1966.
    [36] Y. Shan, J. E. Speich, and K. K. Leang. Low-cost ir reflective sensors for submicrolevel position measurement and control. IEEE/ASME Transactions on Mechatronics, 13(6), Dec. 2008.
    [37] TCST2103 data sheet.
    [38] Honeywell International. HOA1180-003 data sheet.
    [39] Piezomechanik: GmbH. PSt-HD200/5×5/30 data sheet.
    [40] Haydon. 21H4AA-V data sheet.

    下載圖示 校內:2014-07-09公開
    校外:2014-07-09公開
    QR CODE