| 研究生: |
蔡明哲 Tsai, Ming-Che |
|---|---|
| 論文名稱: |
承受移動負載之壓電複合層板振動分析 Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 壓電複合層板 、Newmark 、移動負載 、位移與電荷 |
| 外文關鍵詞: | Piezoelectric Mindlin Plate, Newmark, Moving load, Displacement and etymology of electricity |
| 相關次數: | 點閱:134 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的為探討一個具有壓電材料貼附之Mindlin Plate的動態響應。壓電複合層板結構中主板是鋁板,在下方貼附一壓電材料,計算結構的應力、應變場與連續位移條件推導出動能、應變能方程式,再以Hamilton’s Principle 求得運動方程式與邊界條件,再求解單位元素的位移通解,進而求得形狀函數,由動能、應變能推導出剛性矩陣與質量矩陣,堆疊後經由Lagrange’s equation建立此系統的運動與電壓變化的統馭方程式。
於結構施加一個移動集中負載,應用Newmark 數值積分法解出此板之位移與電壓變化的時間歷程,探討壓電板的厚度、面積與外力之移動速度等參數下造成壓電複合層板振動的位移與電荷變化之影響。
This study presents the vibration analysis of piezoelectric Mindlin
plate under moving load. The host plate is aluminum and the bottom surface bonded with a piezoelectric plate. The governing equations and boundary conditions of the entire system are derived from performing Hamilton’s principle. The finite element method is adopted to analyze the behavior of the entire plate. The shape functions of one element are constructed from solving the equations of static equilibrium. Newmark’s Integration Method is adopted to analyze the plate’s dynamic response. The effects of thickness and area of the piezoelectric layer on the displacement at the center of the plate and the etymology of electricity on the bottom piezoelectric layer are investigated.
1.E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” Journal of Applied Mechanics, Vol. 12, pp. 69-77, 1945.
2.R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,” Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1951.
3.R. D. Mindlin, A. Schacknow and H. Deresiewicz, “Flexural vibrations of rectangular plates,” Journal of Applied Mechanics, Vol. 23, pp. 431-436, 1955.
4.E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates,” Journal of Applied Mechanics, Vol. 28, pp. 402-408, 1961.
5.J. M. Whitney and N. J. Pagano, “Shear deformation in heterogeneous anisotropic plates,” Journal of Applied Mechanics, Vol. 37, pp. 1031-1036, 1970.
6.A. W. Leissa, “The free vibration of rectangular plates,” Journal of Sound and Vibration, Vol. 31, pp. 257-293, 1973.
7.N. D. Phan and J. N. Reddy, “Analysis of laminated composite plates using a higher‐order shear deformation theory,” International Journal for Numerical Methods in Engineering, Vol. 21, pp. 2201-2219, 1985.
8.N. S. Putcha and J. N. Reddy, “Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory,” Journal of Sound and Vibration, Vol. 104, pp. 285-300, 1986.
9.J. N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, 1997.
10.L. X. Luccioni and S. B. Dong, “Levy-type finite element analyses of vibration and stability of thin and thick laminated composite rectangular plates,” Composites Part B: Engineering, Vol. 29, pp. 459-475, 1998.
11.Y. Xing and B. Liu, “Closed form solutions for free vibrations of rectangular Mindlin plates,” Acta Mechanica Sinica, Vol. 25, pp.689-698, 2009.
12.J. A. Gbadeyan and S. T. Oni, “Dynamic behaviour of beams and rectangular plates under moving loads,” Journal of Sound and Vibration, Vol. 182, pp. 677-695, 1995.
13.J. S. Wu, M. L. Lee and T. S. Lai, “The dynamic analysis of a flat plate under a moving load by the finite element method,” International Journal for Numerical Methods in Engineering, Vol. 24, pp. 743-762, 1987.
14.J. J. Wu, A. R. Whittaker and M. P. Cartmell, “The use of finite element techniques for calculating the dynamic response of structures to moving loads,” Computers & Structures, Vol. 78, pp. 789-799, 2000.
15.陳柏先. Vibration analysis of Midlin sandwich Plate with Piezoelectric structure,國立成功大學碩士論文,2006.
16.R. D. Mindlin, “Forced thickness –shear and flexural vibrations of piezoelectric crystal plates,” Journal of Applied Physics, Vol. 22, pp. 83-88, 1952.
17.H. F. Tiersten, “Thickness vibrations of piezoelectric plates,” The Journal of the Acoustical Society of America, Vol. 35, pp. 53-58, 1963.
18.P. Lloyd and M. Redwood, “Finite‐difference method for the Investigation of the vibrations of solids and the evaluation of the equivalent‐circuit characteristics of piezoelectric resonators,” The Journal of the Acoustical Society of America, Vol. 39, pp. 346-354, 1966.
19.C. K. Lee and F. C. Moon, “Laminated piezopolymer plates for torsion and bending sensors and actuators,” The Journal of the Acoustical Society of America, Vol. 85, pp. 2432-2439, 1989.
20.E. F. Crawley and J. De Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal, Vol. 25, pp. 1373-1385, 1987.
21.S. Brooks and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators,” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
22.Y. K. Kang, H. C. Park, W. Hwang and K. S. Han, “Optimum placement of piezoelectric sensor/actuator for vibration control of laminated beams,” AIAA Journal, Vol. 34, pp. 1921-1926, 1996.
23.M. W. Lin, A. O. Abatan and C. A. Rogers, “Application of commercial finite element codes for the analysis of induced strain-actuated structures,” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 869-875, 1994.
24.J. H. Huang and H. I. Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators,” Materials Letters, Vol. 46, pp. 70-80, 2000.
25.A. Fernandes and J. Pouget, “Accurate modelling of piezoelectric plates: single-layered plate,” Archive of Applied Mechanics, Vol. 71, pp. 509-524, 2001
26.A. Fernandes and J. Pouget, “Two-dimensional modelling of laminated piezoelectric composites: analysis and numerical results,” Thin-Walled Structures, Vol. 39, pp. 3-22, 2001.
校內:2021-07-28公開