簡易檢索 / 詳目顯示

研究生: 蔡明哲
Tsai, Ming-Che
論文名稱: 承受移動負載之壓電複合層板振動分析
Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 63
中文關鍵詞: 壓電複合層板Newmark移動負載位移與電荷
外文關鍵詞: Piezoelectric Mindlin Plate, Newmark, Moving load, Displacement and etymology of electricity
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的為探討一個具有壓電材料貼附之Mindlin Plate的動態響應。壓電複合層板結構中主板是鋁板,在下方貼附一壓電材料,計算結構的應力、應變場與連續位移條件推導出動能、應變能方程式,再以Hamilton’s Principle 求得運動方程式與邊界條件,再求解單位元素的位移通解,進而求得形狀函數,由動能、應變能推導出剛性矩陣與質量矩陣,堆疊後經由Lagrange’s equation建立此系統的運動與電壓變化的統馭方程式。
    於結構施加一個移動集中負載,應用Newmark 數值積分法解出此板之位移與電壓變化的時間歷程,探討壓電板的厚度、面積與外力之移動速度等參數下造成壓電複合層板振動的位移與電荷變化之影響。

    This study presents the vibration analysis of piezoelectric Mindlin
    plate under moving load. The host plate is aluminum and the bottom surface bonded with a piezoelectric plate. The governing equations and boundary conditions of the entire system are derived from performing Hamilton’s principle. The finite element method is adopted to analyze the behavior of the entire plate. The shape functions of one element are constructed from solving the equations of static equilibrium. Newmark’s Integration Method is adopted to analyze the plate’s dynamic response. The effects of thickness and area of the piezoelectric layer on the displacement at the center of the plate and the etymology of electricity on the bottom piezoelectric layer are investigated.

    摘要 I Extend Abstract II 致謝 VII 圖目錄 XI 表目錄 XIII 第一章緒論 1 1-1 前言 1 1-2文獻回顧 3 1-3論文架構 6 第二章研究架構 7 2-1 研究流程 7 2-2本文基本假設 8 第三章壓電複合層板運動方程式 9 3-1 研究模型設定 9 3-2 位移函數 10 3-3 線性壓電理論 11 3-4 壓電材料之應變能與動能 13 3-5主板之應變能與動能 16 3-6整體壓電複合層板之運動方程式與邊界條件 18 第四章有限元素法分析 21 4-1靜態平衡方程式 22 4-2單位元素之剛性矩陣與質量矩陣 26 4-3單位元素矩陣堆疊 28 4-4自然頻率分析 30 4-5承受移動集中負載作用 31 4-6 Newmark數值積分法 32 第五章案例探討與模擬數據分析 35 5-1案例探討有限元素模型 35 5-1-1材料設定 35 5-2自然頻率分析 36 5-2-1元素數量對於收斂性之分析 36 5-2-2壓電材料厚度對自然頻率的影響 38 5-3受移動負載之位移比值 39 5-4施加移動負載動態分析 42 5-4-1改變移動負載速度之效應 43 5-4-2改變壓電材料厚度之效應 47 5-4-3改變壓電複合層板面積之效應 50 第六章結論與未來展望 53 6-1結論 53 6-2未來展望 54 參考文獻 55 附錄 58

    1.E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” Journal of Applied Mechanics, Vol. 12, pp. 69-77, 1945.
    2.R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,” Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1951.
    3.R. D. Mindlin, A. Schacknow and H. Deresiewicz, “Flexural vibrations of rectangular plates,” Journal of Applied Mechanics, Vol. 23, pp. 431-436, 1955.
    4.E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates,” Journal of Applied Mechanics, Vol. 28, pp. 402-408, 1961.
    5.J. M. Whitney and N. J. Pagano, “Shear deformation in heterogeneous anisotropic plates,” Journal of Applied Mechanics, Vol. 37, pp. 1031-1036, 1970.
    6.A. W. Leissa, “The free vibration of rectangular plates,” Journal of Sound and Vibration, Vol. 31, pp. 257-293, 1973.
    7.N. D. Phan and J. N. Reddy, “Analysis of laminated composite plates using a higher‐order shear deformation theory,” International Journal for Numerical Methods in Engineering, Vol. 21, pp. 2201-2219, 1985.
    8.N. S. Putcha and J. N. Reddy, “Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory,” Journal of Sound and Vibration, Vol. 104, pp. 285-300, 1986.
    9.J. N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, 1997.
    10.L. X. Luccioni and S. B. Dong, “Levy-type finite element analyses of vibration and stability of thin and thick laminated composite rectangular plates,” Composites Part B: Engineering, Vol. 29, pp. 459-475, 1998.
    11.Y. Xing and B. Liu, “Closed form solutions for free vibrations of rectangular Mindlin plates,” Acta Mechanica Sinica, Vol. 25, pp.689-698, 2009.
    12.J. A. Gbadeyan and S. T. Oni, “Dynamic behaviour of beams and rectangular plates under moving loads,” Journal of Sound and Vibration, Vol. 182, pp. 677-695, 1995.
    13.J. S. Wu, M. L. Lee and T. S. Lai, “The dynamic analysis of a flat plate under a moving load by the finite element method,” International Journal for Numerical Methods in Engineering, Vol. 24, pp. 743-762, 1987.
    14.J. J. Wu, A. R. Whittaker and M. P. Cartmell, “The use of finite element techniques for calculating the dynamic response of structures to moving loads,” Computers & Structures, Vol. 78, pp. 789-799, 2000.
    15.陳柏先. Vibration analysis of Midlin sandwich Plate with Piezoelectric structure,國立成功大學碩士論文,2006.
    16.R. D. Mindlin, “Forced thickness –shear and flexural vibrations of piezoelectric crystal plates,” Journal of Applied Physics, Vol. 22, pp. 83-88, 1952.
    17.H. F. Tiersten, “Thickness vibrations of piezoelectric plates,” The Journal of the Acoustical Society of America, Vol. 35, pp. 53-58, 1963.
    18.P. Lloyd and M. Redwood, “Finite‐difference method for the Investigation of the vibrations of solids and the evaluation of the equivalent‐circuit characteristics of piezoelectric resonators,” The Journal of the Acoustical Society of America, Vol. 39, pp. 346-354, 1966.
    19.C. K. Lee and F. C. Moon, “Laminated piezopolymer plates for torsion and bending sensors and actuators,” The Journal of the Acoustical Society of America, Vol. 85, pp. 2432-2439, 1989.
    20.E. F. Crawley and J. De Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal, Vol. 25, pp. 1373-1385, 1987.
    21.S. Brooks and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators,” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
    22.Y. K. Kang, H. C. Park, W. Hwang and K. S. Han, “Optimum placement of piezoelectric sensor/actuator for vibration control of laminated beams,” AIAA Journal, Vol. 34, pp. 1921-1926, 1996.
    23.M. W. Lin, A. O. Abatan and C. A. Rogers, “Application of commercial finite element codes for the analysis of induced strain-actuated structures,” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 869-875, 1994.
    24.J. H. Huang and H. I. Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators,” Materials Letters, Vol. 46, pp. 70-80, 2000.
    25.A. Fernandes and J. Pouget, “Accurate modelling of piezoelectric plates: single-layered plate,” Archive of Applied Mechanics, Vol. 71, pp. 509-524, 2001
    26.A. Fernandes and J. Pouget, “Two-dimensional modelling of laminated piezoelectric composites: analysis and numerical results,” Thin-Walled Structures, Vol. 39, pp. 3-22, 2001.

    無法下載圖示 校內:2021-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE