簡易檢索 / 詳目顯示

研究生: 楊勝安
Yang, Sheng-An
論文名稱: 可承受大範圍負載及大位移之零勁度隔振機構
A Zero-stiffness Vibration Isolator Capable of a Wide Range of Loads and Large Displacements
指導教授: 藍兆杰
Lan, Chao-Chieh
邱顯堂
Chiou, Shen-Tarng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 96
中文關鍵詞: 隔振機構零勁度低頻隔振勁度硬化平面彈簧
外文關鍵詞: Vibration isolator, Zero-stiffness, Low frequency, Stiffness hardening, Planar springs
相關次數: 點閱:143下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技產業的發展,振動抑制的需求也逐漸提升,因此須利用隔振系統來阻絕振動能量的傳遞,避免造成破壞。本論文延伸零勁度機構的概念來設計被動式隔振機構,取代精密控制之主動式隔振系統,以達到降低成本、提升可靠度及簡化機構等目的。本文針對文獻中之彈簧構型進行延伸,使用兩個斜向彈簧與一個垂直彈簧來合成零勁度,並搭配撓性機構設計方法,設計隔振機構之彈性元件,提出三簧零勁度隔振機構與大範圍零勁度隔振機構。
    有別於文獻中前人之研究,三簧零勁度隔振機構採用特殊設計之平面彈簧,提升空間運用性以及減少零件數目,使機構具尺寸微小化的優點;此外針對機構負載與勁度調控設置調整機構,使機構能運用於大範圍負載,並藉由理論模擬及實驗驗證機構性能。而針對較大振幅輸入之隔振,本論文改良三簧零勁度隔振機構中之負勁度元件,以雙穩態樑取代平面彈簧,發展大範圍零勁度隔振機構,透過雙穩態樑特殊的非線性輸出力,拓展機構的零勁度區間,使機構同時具備可承受大範圍負載及大振幅輸入的性能,並以理論分析驗證其合理性與可行性。最後,期許本論文設計之零勁度隔振機構能應用於各種精密工程之隔振用途中。

    This thesis proposes the design and experiment of a vibration isolator capable of isolating a wide range of loads. The isolator consists of two oblique springs and one vertical spring to achieve zero-stiffness at the equilibrium position. The zero-stiffness characteristic makes the isolator attenuate external disturbance more at low frequencies, when compared with linear isolators. Unlike previous studies, this paper focuses on the analysis of the effect of different loads and the implementation of an adjustment mechanism to handle a wide range of loads. To ensure zero stiffness under imperfect stiffness matching, a lateral adjustment mechanism is also introduced. Instead of using coil springs, special planar springs are designed to realize the isolator in a compact space. Static and dynamic models are developed to evaluate the effect of key design parameters so that the isolator can have a wide isolation range without sacrificing its size. A prototype and its associated experiments are presented to validate the transmissibility curves under three different loads. A further design and discussion is presented for the purpose of attenuating large excitation amplitudes. The results clearly show the advantage of zero-stiffness isolators against linear isolators.

    摘要 I 英文延伸摘要 II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIV 符號說明 XIX 第一章 緒論 1 1.1 背景介紹 1 1.1.1 隔振系統介紹 1 1.1.2 隔振原理介紹 2 1.2 文獻回顧 3 1.2.1 彈簧機構型 4 1.2.2 挫曲結構型 5 1.2.3 磁力型 6 1.2.4 連桿機構型 7 1.2.5 纜線隔振型 8 1.3 動機與目標 9 1.4 論文架構 11 第二章 設計概念 12 2.1 前言 12 2.2 機構設計概念 12 2.2.1 三簧零勁度機構 14 2.2.2 大範圍零勁度機構 16 2.3 非線性振動 18 2.3.1 杜芬方程式 18 2.3.2 諧波平衡法 20 2.4 小結 21 第三章 三簧零勁度隔振機構 22 3.1 前言 22 3.2 靜態分析 22 3.2.1 靜態方程式推導 22 3.2.2 初始角度之影響 24 3.2.3 軸向調整之影響 25 3.2.4 側向調整之影響 26 3.3 動態分析 27 3.3.1 動態方程式推導 28 3.3.2 阻尼比之影響 30 3.3.3 初始角度之影響 31 3.3.4 輸入振幅之影響 32 3.4 訂定設計參數 33 3.5 平面彈簧設計 35 3.5.1 最佳化設計 35 3.5.2 最佳化結果 37 3.6 小結 40 第四章 有限元素分析與實驗驗證 41 4.1 前言 41 4.2 建立CAD模型與有限元素分析 41 4.2.1 平面彈簧CAD模型 41 4.2.2 平面彈簧有限元素分析 42 4.2.3 三簧零勁度機構CAD模型 46 4.2.4 三簧零勁度機構有限元素分析 48 4.3 實驗驗證 49 4.3.1 平面彈簧靜態實驗 49 4.3.2 三簧零勁度機構靜態實驗 52 4.3.3 三簧零勁度機構動態實驗 53 4.4 小結 57 第五章 大範圍零勁度隔振機構 58 5.1 前言 58 5.2 機構分析 58 5.2.1 振動系統方程式之一般表示法 58 5.2.2 側向彈簧為多項式函數Kn(y) 60 5.2.3 側向彈簧係數最佳化 62 5.3 雙穩態樑設計 65 5.3.1 建立形狀參數模型 65 5.3.2 最佳化設計 66 5.3.3 最佳化結果 68 5.4 設計參數對雙穩態樑特性之影響 70 5.4.1 形狀函數階數之影響 70 5.4.2 並聯層數之影響 72 5.4.3 出平面厚度之影響 73 5.4.4 彎曲樑數目之影響 74 5.4.5 設計區間寬度a0之影響 76 5.5 勁度特徵區段之動態分析 79 5.6 小結 83 第六章 結論與未來工作 84 6.1 結論 84 6.2 未來工作 86 參考文獻 89 著作權 96

    [1] Snowdon, J. C., 1979, “Vibration isolation: use and characterization,” The Journal of the Acoustical Society of America, 66(5), pp. 1245-1274.
    [2] Rivin, E. I., 2006, “Vibration isolation of precision objects,” Sound and Vibration, 40(7), pp. 12-20.
    [3] Flannelly, W. G., 1967, “Dynamic antiresonant vibration isolator,” U.S. Patent No. 3,322,379, Washington DC, U.S. Patent and Trademark Office.
    [4] Tarnai, T., 2003, “Zero stiffness elastic structures,” International Journal of Mechanical Sciences, 45(3), pp. 425-431.
    [5] Alabuzhev, P. M. and Rivin, E. I., 1989, Vibration Protection and Measuring Systems with Quasi-zero Stiffness, CRC Press.
    [6] Ibrahim, R. A, 2008, “Recent advances in nonlinear passive vibration isolators,” Journal of Sound and Vibration, 314(3), pp. 371-452.
    [7] Carrella, A., Brennan, M. J., and Waters, T. P., 2007, “Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic,” Journal of Sound and Vibration, 301(3), pp. 678-689.
    [8] Kovacic, I., Brennan, M. J., and Waters, T. P., 2008, “A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic,” Journal of Sound and Vibration, 315(3), pp. 700-711.
    [9] Carrella, A., Brennan, M. J., Kovacic, I., and Waters, T. P., 2009, “On the force transmissibility of a vibration isolator with quasi-zero-stiffness,” Journal of Sound and Vibration, 322(4), pp. 707-717.
    [10] Xu, D., Zhang, Y., Zhou, J., and Lou, J., 2013, “On the analytical and experimental assessment of performance of a quasi-zero-stiffness isolator,” Journal of Vibration and Control, 1077546313484049.
    [11] Robertson, W. S., Cazzolato, B., and Zander, A., 2014, “Horizontal stability of a quasi-zero stiffness mechanism using inclined linear springs,” Acoustics Australia, 42(1), pp. 8-13.
    [12] Le, T. D. and Ahn, K. K., 2010, “The static characteristic of a vibration isolating system with a low dynamic stiffness characteristic” In Control Automation and Systems (ICCAS), 2010 International Conference, pp. 429-432.
    [13] Le, T. D. and Ahn, K. K., 2011, “A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat,” Journal of Sound and Vibration, 330(26), pp. 6311-6335.
    [14] Le, T. D. and Ahn, K. K., 2013, “Experimental investigation of a vibration isolation system using negative stiffness structure,” International Journal of Mechanical Sciences, 70, pp, 99-112.
    [15] Nagarajaiah, S., Pasala, D. T., Reinhorn, A., Constantinou, M., Sirilis, A. A., and Taylor, D., 2013, “Adaptive negative stiffness: a new structural modification approach for seismic protection,” In Advanced Materials Research, 639, pp. 54-66.
    [16] Zhou, J., Wang, X., Xu, D., and Bishop, S., 2015, “Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms,” Journal of Sound and Vibration, 346, pp. 53-69.
    [17] Virgin, L. N. and Davis, R. B., 2003, “Vibration isolation using buckled struts,” Journal of Sound and Vibration, 260(5), pp. 965-973.
    [18] Lee, C. M., Goverdovskiy, V. N., and Temnikov, A. I., 2007, “Design of springs with negative stiffness to improve vehicle driver vibration isolation,” Journal of Sound and Vibration, 302(4), pp. 865-874.
    [19] Liu, X., Huang, X., and Hua, H., 2013, “On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector,” Journal of Sound and Vibration, 332(14), pp. 3359-3376.
    [20] Huang, X., Liu, X., Sun, J., Zhang, Z., and Hua, H., 2014, “Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator,” Nonlinear Dynamics, (76)2, pp. 1157-1167.
    [21] Huang, X., Liu, X., Sun, J., Zhang, Z., and Hua, H., 2014, “Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study,” Journal of Sound and Vibration, 333(4), pp. 1132-1148.
    [22] Abolfathi, A., Waters, T. P., and Brennan, M. J., 2013, “On the performance of a nonlinear vibration isolator consisting of axially loaded curved beams”, Recent Advances in Structural Dynamics (RASD), 2013 International Conference.
    [23] Platus, D. L., 1999, “Negative-stiffness-mechanism vibration isolation systems,” In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, pp. 98-105.
    [24] Platus, D. L., 2012, “Passive thermal control of negative-stiffness vibration isolators,” U.S. Patent No. 8,132,773, Washington DC, U.S. Patent and Trademark Office.
    [25] Carrella, A., 2008, “A passive vibration isolator incorporating a composite bistable plate,” European Nonlinear Oscillations Conference (ENOC), 2008 International Conference.
    [26] Shaw, A. D., Neild, S. A., Wagg, D. J., Weaver, P. M., and Carrella, A., 2013, “A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation,” Journal of Sound and Vibration, 332(24), pp. 6265-6275.
    [27] MacCaig, M., 1987, Permanent Magnets in Theory and Practice, Pentech Press.
    [28] Carrella, A., Brennan, M. J., Waters, T. P., and Shin, K., 2008, “On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets,” Journal of Sound and Vibration, 315(3), pp. 712-720.
    [29] Li, Q., Xu, D. F., Hu, J. C., and Hao, L., 2012, “A low frequency permanent magnet passive vibration isolator,” In Advanced Materials Research, 586, pp. 328-336.
    [30] Xu, D., Yu, Q., Zhou, J., and Bishop, S. R., 2013, “Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic,” Journal of Sound and Vibration, 332(14), pp. 3377-3389.
    [31] Ledezma-Ramirez, D. F., Ferguson, N. S., and Brennan, M. J., 2012, “An experimental switchable stiffness device for shock isolation,” Journal of Sound and Vibration, 331(23), pp. 4987-5001.
    [32] Zhou, N. and Liu, K., 2010, “A tunable high-static-low-dynamic stiffness vibration isolator,” Journal of Sound and Vibration, 329(9), pp. 1254-1273.
    [33] Yang, J., Sun, S. S., Du, H., Li, W. H., Alici, G., and Deng, H. X., 2014, “A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction,” Smart Materials and Structures, 23(10), 105023.
    [34] Araki, Y., Asai, T., and Masui, T., 2009, “Vertical vibration isolator having piecewise‐constant restoring force,” Earthquake Engineering and Structural Dynamics, 38(13), pp. 1505-1523.
    [35] Araki, Y., Asai, T., Kimura, K., Maezawa, K., and Masui, T., 2013, “Nonlinear vibration isolator with adjustable restoring force,” Journal of Sound and Vibration, 332(23), pp. 6063-6077.
    [36] Schmit, N. and Okada, M., 2011, “Synthesis of a non-circular cable spool to realize a nonlinear rotational spring,” In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference, pp. 762-767.
    [37] Kerley Jr James, J., 1962, “Cable type vibration isolator with captivating elements,” U.S. Patent No. 3,044,759, Washington DC, U.S. Patent and Trademark Office.
    [38] Camossi, C., 1967, “Process for manufacturing isolators of shock absorbers based on the principle of damping vibration and/or shocks by means of multistrand cables,” U.S. Patent No. 3,360,225, Washington DC, U.S. Patent and Trademark Office.
    [39] Tinker, M. L. and Cutchins, M. A., 1992, “Damping phenomena in a wire rope vibration isolation system,” Journal of Sound and Vibration, 157(1), pp. 7-18.
    [40] Ni, Y. Q., Ko, J. M., Wong, C. W., and Zhan, S., 1999, “Modelling and identification of a wire-cable vibration isolator via a cyclic loading test,” Journal of Systems and Control Engineering, 213(3), pp. 163-172.
    [41] Friswell, M. I., Flores, E. S., and Xia, Y., 2012, “Vibration isolation using nonlinear springs,”, Proceedings of ISMA2012, pp. 2333-2342
    [42] Shaw, A. D., Neild, S. A., and Wagg, D. J, 2013, “Dynamic analysis of high static low dynamic stiffness vibration isolation mounts,” Journal of Sound and Vibration, 332(6), pp. 1437-1455.
    [43] 吳宜軒,2014,「使用預載曲樑設計直線式變勁度機構」,碩士學位論文,國立成功大學機械工程研究所,台南市,台灣。
    [44] Qiu, J., Lang, J. H., and Slocum, A. H., 2004, “A curved-beam bistable mechanism,” Journal of Microelectromechanical Systems, 13(2), pp. 137-146.
    [45] Friswell, M. I., and Penny, J. E. T., 1994, “The accuracy of jump frequencies in series solutions of the response of a Duffing oscillator,” Journal of Sound and Vibration, 169(2), pp. 261-269.
    [46] Worden, K., 1996, “On jump frequencies in the response of the Duffing oscillator,” Journal of Sound and Vibration, 198(4), pp. 522-525.
    [47] Nayfeh, A. H. and Mook, D. T., 2008, Nonlinear Oscillations, John Wiley & Sons.
    [48] Brennan, M. J., Kovacic, I., Carrella, A., and Waters, T. P., 2008, “On the jump-up and jump-down frequencies of the Duffing oscillator,” Journal of Sound and Vibration, 318(4), pp. 1250-1261.
    [49] Hamdan, M. N. and Burton, T. D., 1993, “On the steady state response and stability of non-linear oscillators using harmonic balance,” Journal of Sound and Vibration, 166(2), pp. 255-266.
    [50] Hu, H. and Tang, J. H., 2006, “Solution of a Duffing-harmonic oscillator by the method of harmonic balance,” Journal of Sound and Vibration, 294(3), pp. 637-639.
    [51] Mickens, R. E., 2001, “Mathematical and numerical study of the Duffing-harmonic oscillator,” Journal of Sound and vibration, 244(3), pp. 563-567.
    [52] Lim, C. W. and Wu, B. S., 2003, “A new analytical approach to the Duffing-harmonic oscillator,” Physics Letters A, 311(4), pp. 365-373.
    [53] Tiwari, S. B., Rao, B. N., Swamy, N. S., Sai, K. S., and Nataraja, H. R., 2005, “Analytical study on a Duffing-harmonic oscillator,” Journal of Sound and Vibration, 285(4), pp. 1217-1222.
    [54] Öziş, T. and Yıldırım, A., 2007, “Determination of the frequency–amplitude relation for a Duffing-harmonic oscillator by the energy balance method,” Computers and Mathematics with Applications, 54(7), pp. 1184-1187.
    [55] Lan, C. C. and Lee, K. M., 2006, “Generalized shooting method for analyzing compliant mechanisms with curved members,” Journal of Mechanical Design, 128(4), pp. 765-775.
    [56] Lan, C. C. and Cheng, Y. J., 2008, “Distributed shape optimization of compliant mechanisms using intrinsic functions,” Journal of Mechanical Design, 130(7), 072304.
    [57] ANSYS®, Inc., 2011, “Solid186, element library, element reference, ANSYS 14.0 Help.”
    [58] ASM, Aerospace Specification Metals, Inc., “ASM Material Data Sheet,” [Online]. Available: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641
    [59] 陳怡和,2011,「發展力量調控機構於不確定性機構互動」,碩士學位論文,國立成功大學機械工程研究所,台南市,台灣。
    [60] Minus K Technology®, Inc., [Online]. Available: http://www.minusk.com/

    下載圖示 校內:2020-11-25公開
    校外:2020-11-25公開
    QR CODE