簡易檢索 / 詳目顯示

研究生: 黃天乙
Huang, Tien-I
論文名稱: 利用高溫澱粉水解策略提升二階段生物產氫效率
Enhancing two-stage biohydrogen production efficiency from starch using thermophillic starch hydrolysis strategy
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 123
中文關鍵詞: 回應曲面實驗法生質產氫酵素動力學連續批次反應器連續式反應器澱粉水解酶澱粉水解酵素固定化
外文關鍵詞: enzyme kinetics, sequencing batch reactor (SBR), response surface methodology (RSM), Starch hydrolysis, amylase, enzyme immobilization, biohydrogen production, celite
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用高溫澱粉水解策略提升二階段產氫效率。此系統主要分為兩階段,先利用微生物法或酵素法進行澱粉前處理,將澱粉轉化成小分子的醣類,以便產氫菌利用,藉此提高暗醱酵生物產氫效率。
    本研究首先以微生物進行澱粉水解,主要是利用高溫菌Caldimonas taiwanensis On1以sequencing batch reactor (SBR)操作策略進行澱粉水解,在pH 7、曝氣速率 1 vvm,置換體積90%時,有最佳的澱粉水解效能,還原糖最大產量 13.94 g reducing sugar/L,還原糖最大產生速率 0.92 g R.S/h/L,澱粉最大水解速率為 1.86 g starch/h/L,並且在經過4個cycle的處理後,總共可以將216 g的澱粉水解,並且得到100.4 g還原糖。接著,以Ca. taiwanensis On1澱粉水解產物當基質,提供Clostridium butyricum CGS2進行暗醱酵連續流產氫。當hydraulic retention time (HRT)從12 h調降至2 h時,產氫速率由0.5 L/h/L提升至1.5 L/h/L,比產氫速率由250提升至534 ml H2/g volatile suspended solids/h,氫氣產率由2.03 下降至1.50 mol H2/mol glucose (12.52~9.19 mmol H2/g starch),氫氣濃度維持在50~60%,菌體濃度維持在 2~3 g VSS/L,pH控制在5.8~6.5。
    接著,本研究亦利用基因重組菌Escherichia. coli BL21 (DE3)/pEAmy3063大量表達澱粉酶,並利用其進行澱粉之酵素水解。先以response surface methodology (RSM) 進行澱粉酶環境因子之最佳化,在pH 6.70 和溫度 54.2℃時,有最佳活性 3.80 U/ml,並利用Michaelis-Menten (M-M) model探討動力學參數,可以得到vmax為5.20 U/ml, Km值為5.18 g/L。使用celite為載體,將澱粉酶以共價鍵結的方法進行酵素固定化,在pH 7.0,澱粉酶濃度 50 mg/ml,固定化時間為2 h時,可得到最佳酵素固定化量為 179.86 mg amylase/g celite。並且利用RSM進行celite-amylae環境因子探討,在pH 6.50 和溫度 53.6℃時,有最佳活性 1.24 U/ml,其M-M動力學模式參數分別為vmax=3.04 U/ml、Km=6.79 g/L。以酵素法水解產物進行Cl. butyricum CGS2和Cl. pasteurianum CH4批次產氫實驗。Cl. butyricum CGS2以cassva starch水解產物為基質時,有最大產氫速率 124 ml/h/L,而Cl. pasteurianum CH4以soluble starch水解產物為基質時,有最大的產氫量與產率分別達301 ml和9.95 mmol/g COD。

    Biohydrogen production from starch using a two-stage thermophillic hydrolysis/drak H2 fermentation strategy was developed. In the first stage, starch was hydrolyzed by a starch-hydrolytic strain Caldimonas taiwanensis On1 or by amylase produced from recombinant E. coli BL21 (DE3)/pEAmy3063. The recombinant amylase was also immobilized on celite to examine for the feasibility of repeated uses of the enzyme. In the second stage, a pure H2-producing strain Clostridium butyricum CGS2 was used to produce H2 from raw or hydrolyzed starch via dark fermentation. Both batch and continuous fermentative H2 production cultures were employed.
    Starch hydrolysis with Ca. taiwanensis On1 was operated using sequencing batch reactor (SBR). The optimal conditions of the SBR were pH, 7.0; aeration rate, 1 vvm; temperature, 55℃. The average reducing sugar production, the sugar production rate and the highest starch hydrolysis rate were 13.94 g R.S./L, 0.92 g R.S./h/L and 1.86 g S/h/L, respectively. After 4 cycles in SBR operation, the maximum amount of starch hydrolyzed and reducing sugar produced were 216 g and 100.4 g, respectively.
    Response surface methodology (RSM) with central composite design (CCD) was used to optimize pH and temperature leading to the best amylase activity. The predicted maximum activity of the amylase produced form E. coli BL21 (DE3)/pEAmy3063 was 3.80 U/ml at pH 6.70 and 54.2℃. The value of vmax and Km estimated from simulation of experimental data was 5.20 U/ml and 5.18 g/L, respectively. The optimal conditions of immobilized celite-amylase were pH, 7.0; amylase concentration, 50 mg/ml; immobilization time, 2 h. The maximum amount of immobilized amylase was 179.86 mg amylase/g celite. The optimal environmental factors leading to a predicted maximum celite-amylase activity of 1.24 U/ml was pH 6.50 and 53.6℃. The value of vmax and Km was 3.04 U/ml and 6.79 g/L, respectively.
    In the batch hydrogen-producing culture, the maximum hydrogen production rate for Clostridium butyricum CGS2 was nearly 124 ml/h/L while using hydrolysate of cassava starch as the substrate. Despite a lower H2 production rate, Cl. pasteurianum CH4 had a higher maximum hydrogen production (Hmax = 301 ml) and hydrogen yield (YH2=9.95 mmol/g COD) when using hydrolysate of soluble starch as the substrate.
    For continuous biohydrogen-producing culture, the operation HRT was decreased from 12 to 2 h using hydrolyzed starch (at a total sugar concentration of 26 g/L) as the feeding substrate. The hydrogen content in biogas stably reached at around 50–60%. The hydrogen production rate increased from 0.5 to 1.5 L/h/L while the HRT decreased from 12 to 2 h. The biomass concentration in the reactor kept within the range of 2 to 3 g VSS/L, while pH varied between 5.8 and 6.5. Meanwhile, the specific hydrogen production rate increased from 250 to 534 ml H2/g VSS/h as HRT decreased from 12 to 2 h, whereas the hydrogen yield decreased slightly from 2.03 to 1.50 mol H2 /mol glucose (i.e., 12.52–9.19 mmol H2/g starch).

    Abstract (Chinese) 1 Abstract (English) 3 Acknowledgement 5 Contents 7 List of Tables 10 Chapter 1 Introduction 13 1.1 Background 13 1.2 Motivation and purpose 13 1.3 Evolution of research scheme 15 Chapter 2 Literature Review 17 2.1 Starch 17 2.2 Amylase 18 2.3 Immobilization of amylase 23 2.4 Microbial pretreatment 26 2.4.1 Amylase production from microbes 26 2.4.2 Sequencing batch reactor (SBR) 26 2.5 Hydrogen production 29 2.5.1 Physiochemical hydrogen production 30 2.5.1.1 Thermo chemical method 30 2.5.1.2 Electrochemical method 31 2.5.1.3 Photoelectrolysis method 31 2.5.2 Biological hydrogen production 32 2.5.3 Dark fermentation for hydrogen production 35 2.6 Biological hydrogen production from starch 39 Chapter 3 Materials and Methods 41 3.1 Equipment 41 3.2 Materials 42 3.3 Bacterial strains and cultivation medium 45 3.3.1 The thermophillic starch hydrolytic bacterium 45 3.3.2 Hydrogen-producing anaerobic bacterium 46 3.3.3 Recombinant Escherichia coli 47 3.4 Analytical methods 48 3.4.1 Measurement of reducing sugar concentration by DNS method 48 3.4.2 Measurement of total sugar concentration by phenol-sulfuric acid 49 3.4.3 Measurement of starch concentration by starch-iodide method 49 3.4.4 Measurement of the gas products 50 3.4.5 Measurement of the soluble products 51 3.4.6 Analysis of mono and oligosaccharides 51 3.4.7 Simulation of time-course experimental data by Gompertz equation 52 3.5 Experimental methods 55 3.5.1 Bacterial starch hydrolysis experiments in flasks 55 3.5.2 Bacterial starch hydrolysis in the fermentor 55 3.5.2.1 Effect of aeration rate on starch hydrolysis 55 3.5.2.2 Effect of pH control on starch hydrolysis 55 3.5.2.3 Starch hydrolysis by sequencing batch reactor (SBR) 56 3.5.3 Starch hydrolysis by recombinant amylase 56 3.5.3.1 Preparation of E. coli BL21(DE3)/pEAmy3063 and recombinant amylase 56 3.5.3.2 SDS-PAGE analysis 57 3.5.3.3 Enzyme activity assay and protein concentration measurement 57 3.5.3.4 Effects of pH and temperature on enzymatic hydrolysis activity 58 3.5.3.5 Oligosaccharide profiles of the enzymatic starch hydrolysis 58 3.5.4 Immobilization of amylase onto celite 58 3.5.4.1 Activation of celite carrier 59 3.5.4.2 Effect of crude amylase concentration on celite-amylase activity 59 3.5.4.3 Effect of pH in reaction solution on celite-amylase activity 60 3.5.4.4 Effect of incubation time on celite-amylase activity 60 3.5.4.5 Effects of pH and temperature on celite-amylase activity 60 3.5.5 Fermentative H2 production from starch hydrolysates 61 3.5.5.1 Hydrogen production by Clostridium butyricum CGS2 in the continuous stirrer tank reactor (CSTR) 61 3.5.5.2 Fermentative H2 production using hydrolyzed starch as carbon substrate 61 3.6 Response surface methodology (RSM) 63 Chapter 4 Microbial starch hydrolysis and biohydrogen production from the hydrolysate 65 4.1 Effect of aeration rate on starch hydrolysis 65 4.2 Effect of pH control on starch hydrolysis 67 4.3 Starch hydrolysis by sequencing batch reactor (SBR) 69 4.4 Continuous hydrogen production by Cl. butyricum CGS2 using hydrolyzed starch 77 Chapter 5 Enzymatic starch hydrolysis and biohydrogen production from the hydrolysate 81 5.1 Expression of the recombinant amylase 81 5.2 Optimal substrate to enzyme ratio for enzymatic starch hydrolysis 83 5.3 Effect of environmental factors on enzymatic starch hydrolysis 85 5.4 Immobilization of amylase onto celite 91 5.4.1 Effects of amylase concentration, pH, and reaction time on celite-amylase immobilization 91 5.4.2 Optimization of celite-amylase on hydrolytic reaction 96 5.5 Kinetics of free and celite-immobilized amylase on starch hydrolysis 98 5.6 Profiles of the hydrolytic products from free amyalse 100 5.7 Fermentative hydrogen production with enzymatic starch hydrolysate 103 Chapter 6 Conclusions 109 References 111 Appendix curriculum vitae 122

    Ann MacGregor, E., S. Janeček, B. Svensson. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. B. B. A. -Proteins Proteomics, 1546, p1-20, 2001.
    Anuradha, R., A.K. Suresh, K.V. Venkatesh. Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem. 35, 367–375, 1999.
    Aroutiounian, V.M., V.M. Arakelyan, G.E. Shahnazaryan. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy, 78, 591-592, 2005.
    Arrojo, B., A. Mosquera-Corral, J.M. Garrido, R.R. Me´ndez. Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res. 38, 3389- 99, 2004.
    Bailey, J.E., D.F. Ollis. Biochemical Engineering Fundamentals. 2nd Edn. New York, McGraw-Hill, 1985.
    Beatriz, M.B., P. Claudia, F.F. Laura, B.V. Francisco. Chromatographic methods for amylases. J. Chromatogr. B, 684: 217-237, 1996.
    Bernfeld, P., 1955. Amylases alpha and beta. In: Colowick, S.P. and Kaplan, O.N., Editors, 1955. Methods in Enzymology, Academic Press, New York, pp. 140–146.
    Beun, J.J., A. Hendriks, M.C.M. van Loosdrecht, E. Morgenroth, P.A. Wilderer, J.J. Heijnen. Aerobic granulation in a sequencing batch reactor. Water Res. 33, 2283- 90, 1999.
    Bhatti, H.N. M.H. Rashid, R. Nawaz, M. Asgher, R. Perveen, A. Jabbar. Purification and characterization of a novel glucoamylase from Fusarium solani. Food Chem. 103, 338-343, 2007.
    Bickerstaff, G. F. Immobilization of enzymes and cells: some practical considerations. In Immobilization of Enzymes and Cells. Edited by G. F. Bickerstaff. Human Press Inc. New Jersey. p. 1-11, 1997
    Box, G.E.P., K.B. Wilson. On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. Ser. 13, 1-45, 1951.
    Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254, 1976.
    Brandam, C., X.M. Meyer, J. Proth, P. Strehaiano, H. Pingaud. An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochem. Eng. J. 13, 43-52, 2003.
    Brock, TD, Madigan MT, Martinko JM, Parker J. Biology of microorganisms, 7thedn. Prentice-Hall, New Jersey, 1994.
    Brumm, P.J., R.E. Hebeda, W.M. Teaque. Bacillus stearotherophilus alpha amylase. Food Biotechnol. 2, 67-80, 1988.
    Chang, F.Y., C.Y. Lin. Biohydrogen production using up-flow anaerobic sludge blanket reactor. Int. J. Hydrogen Energy 29, 33-9, 2004.
    Chang, J.S., K.S. Lee, P.J. Lin. Biohydrogen production with fixedbed bioreactors. Int. J. Hydrogen Energy 27, 1167–74, 2002.
    Chen, C.C., Y.C. Lin, M.C. Lin. Acid-base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol. 58, 224-228,2002.
    Chen, C.Y., J.S. Chang. Feasibility strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. Int. J. Hydrogen Energy 31, 2345-2355, 2006.
    Chen, S.D., D.S. Sheu, W.M. Chen, Y.C. Lo, T.I. Huang, C.Y. Lin, J.S. Chang. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnol. Prog. 23, 1312-1320, 2007.
    Chen, W.M., J.S. Chang, C.H. Chiu, S.C. Chang, W.C. Chen, C.M. Jiang. Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring. Sys. Appl. Microbiol. 28,415-420, 2005.
    Das, D., T.N. Veziroglu. Hydrogen production by biological processes: a survey of literature. Int. J. of Hydrogen Energy 26, 13-28, 2001.
    Dobreva, E., V. Ivanova, E. Emanuliova. Effect of temperature on some characteristics of the thermostable α-amylase from B. licheniformis. World J. Microbiol. Biotechnol. 10, 547-550,1994.
    Dubois, M., K.A. Gilles, J.K. Hamilton, P.A.Rebers, F. Smith. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28, 350-356, 1956.
    El-Batal, A.I., K.S. Atia, M. Eid. Stabilization of a-amylase by using anionic surfactant during the immobilization process. Radiat. Phys. Chem. 74, 96-101, 2005.
    Endo, G., T. Noike, J. Matsumoto. Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc. Soc. Civ. Engrs. 325, 61-8, 1982.
    Fan, Y.T., C.L. Li, J.J. Lay, H.W. Hou, G.S. Zhang. Optimization of initial substrate and pH levels for Agermination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour. Technol. 91, 189-193, 2004.
    Fang, H.H.P., H. Liu. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol., 82, 87-93,2002.
    Fang, T.Y., W.C. Tseng, C.J. Yu, T.Y. Shih. Characterization of the thermophilic isoamylase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J. of Mol. Catal. B-Enzym., 33, 99-107, 2005.
    Gomes, I., J. Gomes, W. Stenier. Highyly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour. Technol. 90, 207-214, 2003.
    Gupta, R., P. Gigras, H. Mohapatra, V.K. Goswami,B. Chauhan. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38, 1599-1616, 2003.
    Guyot, J.P., J. Morlon-Gyuot. Effect of different cultivation conditions on Lactobacillus manihotivorans OND32T, an amylolytic lactobacillus isolated from sour starch cassava fermentation. Int. J. Food Microbiol. 67, 217-225, 2001.
    H. Fuwa, A new method of microdetermination of amylase activity by the use of amylase as the substrate, J. Biochem. 41 (1954) 583–603.
    Haki, G.D., S.K. Rakshit. Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89, 17-34, 2003.
    Han, S.K., S.H. Kim, H.W. Kim, H.S. Shin. Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis. Water Sci. Technol. 52, 131-138, 2005.
    Hawkes, F.R., I. Hussy, G. Kyazze, R. Dinsdale, D.L. Hawkes,. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy 32, 172-184, 2007.
    Hawkes, F.R., R. Dinsdale, D.L. Hawkes, I. Hussy. Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energy 27, 1339-1347, 2002.
    Heinzel, A., B. Vogel, P. Hübner. Reforming of natural gas – hydrogen generation for small scale stationary fuel cell systems. J. Power Sources 150, 202-207, 2002.
    Horváthová, V., A. Godány, E. Šturdík, Š. Janeček. α-Amylase from Thermococcus hydrothermalis: Re-cloning aimed at the improved expression and hydrolysis of corn starch. Enzyme Microb. Technol. 39, 1300-1305, 2006.
    Hu, L., J. Wang, X. Wen, Y. Qian. The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules. Process Biochem. 40, 5-11, 2005.
    Hussy, I., F.R. Hawkes, R. Dinsdale, D.L. Hawkes. Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol. Bioeng. 84, 619-626, 2003.
    Ipsita, R., N.G. Munishwar. Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme Microb. Technol. 34, 26-32, 2004.
    Jens, E.N., L. Beier, D. Otzen, V. Torben, H.B.F. Borchert. Andersen Kim and allan svendsen Electrostatics in the active site of an a-amylase. Eur. J. of Biochem. 264, 817-823, 1999.
    Kapdan, I.K., F. Kargi. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569-582, 2006.
    Kierstan, M.P.J., M.P. Coughlan. Immobilization of proteins by noncovalent procedures: principles and application. In Protein Immobilization: Fundamentals and Applications. Edited by R.F. Taylor. Marcel Dekker, Inc. New York. P.13-71.1991
    Kim, S.H., S.K. Han, H.S. Shin. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem. 41, 199-207, 2006.
    Lay, J.J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68, 269-278, 2000.
    Lee, K.S., J.F. Wu, Y.S. Lo, Y.C. Lo, P.J. Lin, J.S. Chang. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol. Bioeng. 87, 648-657, 2004.
    Li, C.L., H.H.P. Fang. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1–39, 2007.
    Li, H.F., Z.M. Chi, X.H. Duan, L. Wang, J. Sheng, L.F. Wu. Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochem. 42, 462-465, 2007.
    Lin, C.Y., C.H. Lay. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrogen Energy 29, 275-281, 2004.
    Liu, C.H. Isolation and application of lipase producing bacteria. Doctoral dissertation. Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, 2008.
    Liu, G., J. Shen. Effects of medium conditions on hydrogen production from starch using anaerobic bacteria. J. Biosci. Bioeng. 98, 251-256, 2004.
    Liu, Y., Q.S. Liu. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnol. Adv. 24, 115-127, 2006.
    Liu, Y., Z.W. Wang, L. Qin, Y.Q. Liu, J.H. Tay. Selection pressure-driven aerobic granulation in a sequencing batch reactor. Appl. Microbiol. Biotechnol. 67, 26-32, 2005.
    Lo, Y.C., W.M. Chen, C.H. Hung, S.D. Chen, J.S. Chang. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Res., 42, 827-842, 2008.
    Lo, Y.S. Using response surface methodology to determine optimal conditions for fermentative H2 production with an indigenous anaerobic H2-producing bacterium Clostridium butyricum CGS2. Master thesis. Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, 2005.
    Malina, J.F., J.F.G. Pohland. Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Pub Co, USA, 1992.
    McSwain, B.S., R.L. Irvine, P.A. Wilderer. The influence of settling time on the formation of aerobic granules. Water Sci. Technol. 50, 195-202, 2004.
    Morgenroth, E., T. Sherden, M.C.M. van Loosdrecht, J.J. Heijnen, P.A. Wilderer. Aerobic granular sludge in a sequencing batch reactor. Water Res. 31, 3191-4, 1997.
    Morrison, R.T., R.N. Boyd. Aldehydes and ketones: nucleophilic addition. In Organic chemistry, Sixth edition, Prentice-Hall International Inc., New York, p.679-680. 1992
    Mu, Y., H.Q. Yu, G. Wang. A kinetic approach to anaerobic hydrogen-producing process. Water Res. 41, 1152-1160, 2007.
    Nair, S.U., R.S. Singhal, M.Y. Kamat. Introduction of pullulanase production in Bacillus cereus FDTA-13. Bioresour. Technol. 98, 856-859, 2007.
    Nguyen, B.N.T., C.A. Leclerc. Catalytic partial oxidation of methyl acetate as a model to investigate the conversion of methyl esters to hydrogen. Int. J. of Hydrogen Energy 33, 1295-1303, 2008.
    Norman, B.E., A novel debranching enzyme for application in the glucose syrup industry. Starch 34, 340-346, 1982.
    OPEC, Organization of the Petroleum Exporting Countries, website: http://www.opec.org, 2008.
    Peng, D., N. Bernet, J.P. Delgenes, R. Moletta. Aerobic granular sludge—a case report. Water Res. 33, 890- 3, 1999.
    Qin, L., J.H. Tay, Y. Liu. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process. Biochem. 39, 579-84, 2004a.
    Qin, L., Y. Liu, J.H. Tay. Effect of settling time on aerobic granulation in sequencing batch reactor. Biochem. Eng. J. 21, 47-52, 2004b.
    Reddy, G., Md. Altaf, B.J. Naveena, M. Venkateshwar, E. Vijay Kumar. Amylolytic bacterial lactic acid fermentation - A review. Biotechnology Advances 26, 22–34, 2008.
    Schwarzenbeck N., R. Erley, P.A. Wilderer. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Sci. Technol. 49:21-46, 2004.
    Suckling, C.J. Enzyme chemistry :impact and applications. 2nd ed, Chapman and Hall, New York, p.311, 1990.
    Tay, J.H., Q.S. Liu, Y. Liu. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol. 91, 168- 75, 2001.
    Tay, J.H., S. Pan, Y.X. He , S.T.L. Tay. Effect of organic loading rate on aerobic granulation: I Reactor performance. J. Environ. Eng. 130, 1094 - 101, 2004.
    Tchobanoglous, G., F.L. Burton, H.D. Stensel. Wastewater Engineering, Treatment, Disposal, Reuse, 4th edn., Metcalf & Eddy, Inc., McGraw-Hill Publishing Company Ltd, 2002.
    Tester, R.F., X. Qi, J. Karkalas. Hydrolysis of native starches with amylases. Anim. Feed Sci. Technol. 130, 39-54, 2006.
    Thorsen, T.S., A.H. Johnsen, K. Josefsen, B. Jensen. Identification and characterization of glucoamylase from the fungus Thermomyces lanuginosus. B. B. A. -Proteins Proteomics 1764, 671-676,2006.
    Timberlake, K.C. Chemistry: An Introduction to General, Organic, & Biological Chemistry. 8th edition. Pearson, 2002.
    Ueno, Y., S. Otsuka, M. Morimoto. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng. 82, 194-197, 1996.
    van der Maarel, M.J.E.C.; B. van der Veen, J.C.M. Uitdehaag, H. Leemhuis, L. Dijkhuizen. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94, 137-155, 2002.
    van Ginkel, S., S. Sung, J.J. Lay. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35, 4726-4730, 2001.
    van Ginkel, S.W., B. Logan. Increased biological hydrogen production with reduced organic loading. Water Res. 39, 3819-26, 2005.
    Vihinen, M., P. Mäntsälä. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24, 329-418, 1989.
    Wang, C.H., J.S. Chang. Continuous biohydrogen production from starch with granulated mixed bacterial microflora. Energy Fuel 22, 93-7, 2008.
    Wang, Q., G. Du, J. Chen. Aerobic granular sludge cultivated under the selective pressure as a driving force. Process Biochem. 39, 557- 63, 2004.
    Watson, S.D., B.I. Pletschke. The effect of sulfide on α-glucosidases: Implications for starch degradation in anaerobic bioreactors. Chemosphere 65, 159-164, 2006.
    Wu, J.F. Biohydrogen production using starch as the carbon substrate. Master thesis. Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, 2006.
    Yang, S.F., Y. Liu, J.H. Tay. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J. Biotechnol. 106, 77- 86, 2003.
    Yokoi, H., T. Tokushige, J. Hirose, S. Hayashi, Y. Takasaki. H2 production form starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol. Lett. 20, 143-147, 1998.
    Yoshio, K., M. Yoshihir, K. Michio, M. Yoshiki. Three-dimensional Structure of Pseudomonas Isoamylase at 2.2 Å Resolution. J. Mol. Biol. 281, 885-897, 1998.
    Yu, H., Z. Zhu, W. Hu, G.S. Zhang. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy 27, 1359-1365, 2002.
    Yuukt, T., T. Nomura, T., H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, S. Udaka. Complete nucleotide sequence of a gene coding for heat- and pH-stable α-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying α-amylase deduced from the DNA sequences. J. Biochem. 98, 1147-1156, 1985.
    Zheng, Y.M., H.Q. Yu, G.P. Sheng. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochem. 40, 645-50, 2005.
    Zwietering, M.H., I. Jongenburger, F.M. Rimbouts, K. van’t Riet,. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1857-1881, 1990.

    無法下載圖示 校內:2107-08-20公開
    校外:2107-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE