簡易檢索 / 詳目顯示

研究生: 劉政良
Liu, Cheng-Liang
論文名稱: 分子動力學運用於薄膜機械性質之計量與實驗
Investigation of Indentation Process and Quantitative Evaluation of Thin Film Mechanical Properties Using Molecular Dynamics Simulation
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 120
中文關鍵詞: 楊氏模數分子動力學勢能奈米壓痕
外文關鍵詞: Molecular dynamics, Nanoindentation, young's modulus, potential
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   奈米壓痕是最近發展出的技術,一種量測薄膜的機械性質的新方法。當薄膜厚度愈來愈薄之時,微硬度試驗實驗上有它的缺陷,因此奈米壓痕技術隨即受到注目。其利用負載與壓痕深度的關係圖,來求得薄膜的機械性質。而本研究中,實驗方面使用NanoTest來量測鑽石膜,而金膜跟鎳膜則是使用Hysitron TriboScope®來量測,藉此得到鑽石膜、金膜及鎳膜的機械性質。而其接觸的機制一直受到注意,因此為了觀察其微觀接觸下的界面效應,本研究還使用分子動力學做為工具,希望藉由其原子動態的特性來幫助瞭解接觸界面間的物理現象,並且與實驗結果相互比較。模擬方面,使用Tersoff勢能來描述碳原子的行為,而金和鎳則是使用TB-SMA勢能來描述。本文研究發現硬度及楊氏模數會隨著溫度上升而下降;並且在相同負載速度之下,不同壓深會造成硬度及楊氏模數的變化。另外,壓痕器在壓痕過程中會產生磨耗及壓縮的現象,造成壓痕器的投影面積估算上的誤差,使得硬度高估的現象。此外,在相同壓深之下,增加負載速度,可以發現硬度及楊氏模數都呈現上升的趨勢。

      Mechanical properties of diamond, gold and nickel films were investigated by nanoindentation experiments and molecular dynamics (MD). Molecular dynamics is used to describe the atomistic interface behavior under indentation. The Tersoff potential function was used to describe the behavior of carbon atoms and gold and nickel atoms were described by the TB-SMA potentials. The results showed that both the hardness and Young’s modulus of the films are decreased as the temperature increased. The hardness and Young’s modulus are increased with increasing loading rate. Compared with nanoindentation experiments and MD result it can obtain that the indentation load and penetration became weaker as the film was thinner due to the size effect. Under the same loading rate, the hardness and Young’s modulus decreased due to the increasing penetration depth. Furthermore, because of the indenter’s wear and compressive occurrence under indentation, the hardness could be under-estimated using determination for the projection contact area.

    中文摘要 І 英文摘要 II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號表 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 4 1-4 本文架構 5 第二章 基本理論 6 2-1 掃描探針顯微術 6 2-2-1成像原理 6 2-2 奈米壓痕試驗之硬度與彈性模數理論建立 8 2-3 分子動力學理論 15 2-3-1 物理模型 15 2-3-2 勢能函數 16 第三章 分子動力學數值模擬方法 36 3-1週期邊界的設定 36 3-2模擬參數與無因次化 36 3-3設定初始條件 37 3-4 Rescaling方法 38 3-5運動方程式 39 3-5-1 Gear五階預測修正法 40 3-5-2 Verlet法 42 3-6截斷半徑法 43 3-6-1 Verlet表列法 44 3-6-2 Cell link表列法 45 3-6-3 Verlet表列法結合Cell link表列法 45 第四章 實驗方法及步驟 51 4-1實驗目的 51 4-2 金膜及鎳膜之鍍製 51 4-3 薄膜特性分析及鑑定 53 4-3-1 拉曼光譜分析 53 4-3-2 掃描式電子顯微鏡分析 53 4-3-3 掃描探針顯微鏡分析 53 4-3-4 歐傑電子質譜儀 53 4-3-5 X光繞射分析 54 4-4 模擬流程圖 55 第五章 結果與討論 63 5-1 前處理檢測分析 63 5-1-1 掃描電子顯微鏡(Scanning Electronic Microscope) 63 5-1-2 拉曼光譜儀(Raman spectroscopy) 63 5-1-3 原子力顯微鏡(Atomic Force Microscope) 64 5-1-4 歐傑電子光譜儀(Auger Electron Spectroscopy) 64 5-1-5 X光繞射儀(X-Ray Diffractometer) 65 5-2 壓痕試驗結果 65 5-2-1鑽石膜壓痕試驗結果 66 5-2-2金膜壓痕試驗結果 66 5-2-3鎳膜壓痕試驗結果 67 5-3 分子動力學模擬結果 67 5-3-1 鑽石膜的模擬 68 5-3-2 金膜的模擬 69 5-3-3 鎳膜的模擬 70 5-4 分子動力學模擬之現象探討 70 5-4-1 溫度效應 71 5-4-2 深度效應 72 5-4-3 壓痕器磨耗及壓縮效應 72 5-4-4 負載速度的效應 74 第六章 結論與未來研究方向 110 6-1 結論 110 6-2 未來發展 111 參考文獻 113 自述 120

    1.W. C. Oliver and G. M. Pharr, 〝An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments〞, J. Mater. Res., Vol.7, pp.1564-1583(1992).

    2.W. C. Oliver and G. M. Pharr, 〝Measurement of Hardness and Elastic Modulus by Instrumented Indentation:Advances in Understanding and Refinements to Methodology.〞, J. Mater. Res., Vol.19, pp.3-20(2004).

    3.R. Saha and W.D. Nix,〝Soft Films on Hard Substrates-Nanoindentation of Tungsten Films on Sapphire Substrates.〞, Mater. Sci. Eng. A, Vol.319-321, pp.898-901(2001).

    4.R. Saha and W.D. Nix,〝Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation.〞, Acta Materialia, Vol.50, pp.23-38(2002).

    5.Z. Liu, J. Sun and W. Shen,〝Study of Plowing and Friction at the Surfaces of Plastic Deformed Metals.〞, Tribo. Inter., Vol.35, pp.511-522(2002).

    6.E. S. Puchi-Cabrera, 〝A New Model for the Computation of the Composite Hardness of Coated System.〞, Surf. and Coat. Tech., Vol.160, pp.177-186(2002).

    7.T. H. Fang and W. J. Chang, 〝Nanomechanical Properties of Copper Thin Films on Different Substrates Using the Nanoindentation Technique.〞Microele. Eng., Vol.65, pp.231-238(2003).

    8.H. Rafii-Tabar, 〝Modelling the Nano-Scale Phenomena in Condensed Matter Physics Via Computer-Based Numerical Simulations.〞, Phys. Rep. Vol.325, pp.239-310(2000).

    9.U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton,〝Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture.〞Science, Vol.248, pp.454-461(1990).

    10.K. Komvopoulos and W. Yan, 〝Molecular Dynamics Simulation of Single and Repeated Indentation.〞, J. Appl. Phys., Vol.82, pp.4823-4830(1997).

    11.R. P. Webb, J. J. Jimenez-Rodriguez, M. Kerford and S. R. P. Silva, 〝The Formation of Diamond-Like Carbon Films Due to Molecular Impacts on Graphite.〞, Diamond Related Mater., Vol.7, pp.1163-1166(1998).

    12.A. Richter, R. Ries, R. Smith, M. Henkel and B. Wolf, 〝Nanoindentation of Diamond, Graphite and Fullerene Films.〞,Diamond Related Mater., Vol.9, pp.170-184(2000).

    13.D. Christopher, R. Smith and A. Richter, 〝Nanoindentation of Carbon Materials.〞,Nu. Inst. Meth. in Phys. Res. B., Vol.180, pp.117-124(2001).

    14.K. Kohary, S. Kugler and I. Laszlo, 〝Molecular Dynamics Simulations of Amorphous Carbon Structures.〞J. Non-Cry. Solids, Vol.227-230, pp.594-596(1998).

    15.S. B. Sinnott, R. J. Colton, C. T. White, O. A. Shenderova, D. W. Brenner and J. A. Harrison, 〝Atomistic Simulations of the Nanometer-Scale Indentation of Amorphous-Carbon Thin Films.〞J. Vac. Sci. Tech. A, Vol.15, pp.936-940(1997).

    16.J. Li, K. J. V. Vliet, T. Zhu, S. Yip and S. Suresh, 〝Atomistic Mechanisms Governing Elastic Limit and Incipient Plasticity in Crystals.〞Nature, Vol.418, pp.307-310(2002).

    17.W. C. D. Cheong and L. C. Zhang, 〝Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals Due to Nano-Indentation.〞, Nanotechnology, Vol.11, pp.173-180(2000).

    18.P. Walsh, R. K. Kalia, A. Nakano and P. Vashishta, 〝Amorphization and Anisotropic Fracture Dynamics During Nanoindentation of Silicon Nitride:A Multimillion Atom Molecular Dynamics Study.〞, App. Phys. Lett., Vol.77, pp.4332-4334(2000).

    19.A. Gannepalli and S. K. Mallapragada, 〝Molecular dynamics Studies of Plastic Deformation During Silicon Nanoindentation.〞,Nanotechnology, Vol.12, pp.250-257(2001).

    20.J. B. Adams, L. G. H. Jr, D. J. Siegel, H. Yu and J. Zhong, 〝Adhesion, Lubrication and Wear on the Atomic Scale.〞, Surf. Interface anal., Vol.31, pp.619-626(2001).

    21.Y. Y. Ye, R. Biswas, J. R. Morris, A. Bastawros and A. Chandra, 〝Molecular Dynamics Simulation of Nanoscale Machining of Copper.〞, Nanotechnology, Vol.14, pp.390-396(2003).

    22.Z. H. Xu and D. Rowcliffe, 〝Nanoindentation on Diamond-Like Carbon and Alumina Coatings.〞, Surf. Coat. Tech., Vol.161, pp.44-51(2002).

    23.R. Komanduri, N. Chandrasekaran and L. M. Raff, 〝M.D. Simulation of Nanometric Cutting of Single Crystal Aluminum-Effect of Crystal Orientation and Direction of Cutting.〞, Wear, Vol.242, pp.60-88(2000).

    24.B. Bhushan, 〝Handbook of Micro/Nano Tribology 2nd edition〞, CRC, New York,(1999).

    25.A. De Stefanis and A. A. G. Tomlinson, 〝Scanning Probe Microscopies From Surface Structure to Nano-scale Engineering,〞Trans Tech Publications Inc, UK(2001).

    26.Roland Wiesendanger(Ed.), 〝Scanning Probe Microscopy- Analytical Methods〞, Springer-Verlag, New York(1998).

    27.T. Sakurai and Y. Watanabe Eds., 〝Advances in Scanning Probe Microscopy〞, Springer-Verlag, New York(2000).

    28.陳冠維, 〝掃描式探針顯微鏡摩擦力檢測應用於不繡鋼氮離子植佈技術之建立及材料微/奈米機械性質檢測〞, 國立成功大學, 碩士論文, (2003).

    29.I. N. Sneddon, 〝The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for A Punch of Arbitrary Profile〞, Int. J. Engng Sci., Vol.3, pp.47-57(1965).

    30.G. M. Pharr, W. C. Oliver and F. R. Brotzen, 〝On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation〞, J. Mater. Res., Vol.7, pp.613-617(1992).

    31.R. B. King, 〝Elastic Analysis of Some Punch Problems for a Layered Medium〞, Int. J. Solids Structure, Vol.23, No.12, pp.1657-1664(1987).

    32.G. C. Maitland, M. Rigby, E. B. Smith and W. A. Wakeham, 〝Intermolecular Forces.〞Oxford University Press, London,(1987).

    33.J. M. Haile, 〝Molecular Dynamics Simulation〞, John Wiley & Sons, New York, (1992).

    34.D. C. Rapaport,〝The Art of Molecular Dynamics Simulation.〞, Cambridge University Press, London,(1997).

    35.D. W. Heermann,〝Computer Simulation Method.〞, Springer-Verlag, Berlin,(1990).

    36.R. Smith et al., 〝Atomic & Ion Collisions in Solids and at Surfaces.〞, Cambridge University Press, London,(1997).

    37.Fabrizio Cleri, and Vittorio Rosato, 〝Tight-Binding Potentials for Transition Metals and Alloys〞, Phys. Rev. B., Vol.48, pp.22-33(1993).

    38.S. Murray, and M. I. Baskes, 〝Embedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals〞, Phys. Rev. B., Vol.29, pp.6443-6453(1984).

    39.M. I. Baskes, 〝Modified Embedded-Atom Potentials for Cubic Materials and Impurities〞, Phys. Rev. B., Vol.46, pp.2727-2742(1992).

    40.S. M. Foiles, M. I. Baskes, and M. S. Daw,〝Embedded-Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and their Alloys〞, Phys. Rev. B., Vol.33, pp.7983-7991(1986).

    41.M. Meyer et al., 〝Computer Simulation in Chemical Physics.〞, Series C:Mathematical and Physical Science Vol.397, Kluwer Academic, Dordrecht,(1992).

    42.J. Tersoff,〝New Empirical Model for the Structural Properties of Silicon〞, Phys. Rev. Lett., Vol.56, pp.632-635(1986).

    43.J. Tersoff, 〝New Empirical Approach for the Structure and Energy of Covalent Systems〞, Phys. Rev. B., Vol.37, pp.6991-7000(1988).

    44.J. Tersoff, 〝Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent System〞, Phys. Rev. B., Vol.39, pp.5566-5568(1989).

    45.J. Tersoff, 〝Empirical Interatomic Potential for Silicon with Improved Elastic Properties〞, Phys. Rev. B., Vol.38, pp.9902-9905(1988).

    46.J. Tersoff, 〝Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon〞, Phys. Rev. Lett., Vol.61, pp.2879-2882(1988).

    47.A. C. Fischer-Cripps, 〝Simulation of Sub-Micron indentation Tests with Spherical and Berkovich Indenters〞, J. Mater. Res., Vol.16, No.7, pp.2149-2157(2001).

    48.A. C. Fischer-Cripps, 〝Nanoindentation〞, Springer-Verlag, New York, (2002).

    49.J. B. Pethica, R. Hutchings and W. C. Oliver, 〝Hardness Measurement at Penetration As Small As 20nm〞, Philos. Mag. A., Vol.48, No.4, pp.593-606(1983).

    50.D. Frenkel and B. Smit, 〝Understanding Molecular Simulation.〞, Academic Press, San Diego,(1996).

    51.V. Paidar, A. Larere and L. Priester, 〝Exponential Many-Body Potentials and Elastic Constants of FCC Transition Metals.〞, Modelling simul. Mater. Sci. Eng., Vol.5, pp.381-390(1997).

    下載圖示 校內:2005-07-29公開
    校外:2005-07-29公開
    QR CODE