研究生: |
申忠哲 Shen, Chung-Jer |
---|---|
論文名稱: |
處理煉焦廢水之活性污泥槽中硫氰酸分解菌的族群結構之研究 Studies on the community structure of thiocyanate degrading bacteria in activated sludge reactor treated with coking wastewater |
指導教授: |
曾怡禎
Tseng, I-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 菌群結構 、分子選殖 、變性梯度明膠電泳 、硫氰酸分解菌 |
外文關鍵詞: | DGGE, microbial community, thiocyanate-degrading bacteria, clone library |
相關次數: | 點閱:140 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以分子生物方法探討處理煉焦廢水活性污泥槽中微生物社會族群結構的相關研究鮮少,本實驗主要利用16S rDNA clone library、親源演化分析和傳統培養等方法,藉以分析煉焦廢水中硫氰酸分解菌的族群結構。以序列稀釋法和血清瓶培養法分離菌株,總共獲得13株純菌,利用16S rDNA序列比對與親源關係分析,結果顯示分離菌株主要可區分為5種不同的菌屬並分別屬於β-和γ- Proteobacteria,其中兩屬是目前已知具硫氰酸分解能力之菌屬(Thiobacillus thioparus, Pseudomonas stutzeri, Pseudomonas fluorescens 和 Thiobacillus sp.),另三個屬則是新發現具有硫氧化能力之菌屬(Bacterium sp.、Stentrophomonas maltophilia和Klebsiellla sp.)。並以16S rDNA clone library的方式建構兩個不同的活性污泥槽之硫氰酸分解菌的族群結構。在深層曝氣池的clone library,共獲得9種不同的OTU,利用16S rDNA序列比對與親源演化分析,結果顯示46.1% clones為硫分解代謝相關的菌群(Thiobacillus denitrificans、Bacterium sp.和Sulfurspirillum deleyianum),其中Thiobacillus denitrificans 為具有硫氰酸分解能力的菌種;在10L SCN強化槽的clone library,共獲得10種不同的OTU,利用16S rDNA序列比對與親源演化分析,結果顯示Uncultured Flexibacter sp.是最優勢的菌株,佔總clones數量的74.3%,其次是Thiobacillus denitrificans佔16.2%,表示Thiobacillus denitrificans為處理煉焦廢水活性污泥槽中硫氰酸分解之最主要的優勢菌種。比較分離培養和分子技術所獲得之菌群結構特性,則顯示兩者所建立的菌群組成結構有明顯之差異。本研究亦利用所獲得之16S rDNA序列當作分子標誌,藉由變性梯度明膠電泳探討煉焦廢水活性污泥槽菌群結構的變動。
Bacterial diversity in activated sludge reactor treated with coking effluent was still rarely investigated using culture-independent techniques. In the present study, community structure of thiocyanate-degrading bacteria in coking wastewater was analyzed, using 16S rDNA clone library, phylogentic analysis and traditional cultivation. From the series dilution and bottle enrichment cultures, 13 bacterial strains were characterized by 16S rDNA analyses. The isolates were affiliated to five different phylogenetic groups within the β- and γ- subclass of Proteobacteia. Two of these phylotypes were already described as thiocyanate-degrading bacteria (Thiobacillus thioparus, Pseudomonas stutzeri, Pseudomonas fluorescens and Thiobacillus sp.), but three groups represented new S-oxidizers (Bacterium sp., Stentrophomonas maltophilia and Klebsiella sp.). 16S rDNA clone libraries were constructed from two different activated sludge reactors. A total of 9 OTUs from the deep aeration pool library were phylogenetically analyzed by 16S rDNA. The results revealed that 46% of clones phylogenetically related to S-oxidizers(Thiobacillus denitrificans, Bacterium sp. and Sulfurspirillum deleyianum), and Thiobacillus denitrificans was capable of thiocyanate degrading. A total of 10 OTUs from 10L SCN library were phylogenetically analyzed. Members of the uncultured Flexibacter sp. were the most aboundant, representing 74.3% of clones. The minor was Thiobacillus denitrificans, represening 16.2% of clones. This result indicated that Thiobacillus denitrificans was the major bacteria of thiocyanate degrading in activated sludge reactor treated with steel effluent. The comparison of culture-dependent and culture-independent data suggested that the difference was in the microbial community components. In this study, the 16S rDNA database of clone library was also used as markers by DGGE for molecular monitoring the dynamic change of activated sludge reactor treated steel efflunt.
廖俊博,2002。南仁山古湖底泥甲烷氧化菌社會結構之研究。碩士論文。國立成功大學生物學研究所,台南市。
趙幼梅和陳文昌,2001。探討煤化學脫硫場尾氣成分對排放水SCN-之影響。中國鋼鐵公司研究報告。高雄市。
鄭幸雄、曾怡禎、葉美鳳、梁德明、王永福、邱瓊芳和簡杏純,2002。活性污泥處理槽微生物生態指標之建立。中國鋼鐵公司委託研究期末報告書,台南市。
Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
Banerjee, G. 1996. Phenol- and thiocyanate-based wastewater treatment in RBC reactor. J. Environ. Eng. 122:941-948.
Barreiros L., B. Nogales, C. M. Manaia, A. C. Silva- Ferreira, D. H. Pieper, M. A. Reis, and O. C. Nunes. 2003. A novel pathway for mineralization of the thiocarbamate herbicide molinate by a defined bacteria mixed culture. Environ. Microbiol. 5:944-953.
Batchelor, B., and A. W. Lawrence. 1978. Stoichiometry of autotrophic denitrification using elemental sulfur. Chemistry of Wastewater Technology. A. J. Rubin (ed.), Ann Arbor Science Publishers, Ann Arbor, Michigan, USA, pp.421-440.
Beggiato, F.S. 1838. Memoria della terme Euganee. Padua.
Betts, P. M., D. F. Rinder, and J. R. Fleeker. 1979. Thiocyante utilization by an Arthrobacter. Can. J. Microbiol. 25:1277-1282.
Brock, T. D., M. T. Madigan, J. M. Martinko, and J. Parker. 1995.Chapter 16th and 17th, p575-691, Biology of Microorganism 7th, Prentice-Hall, Inc.
Braid, M. D., L. M. Daniels, and C. L. Kitts. 2003. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52:389-393.
Brosius, J., T. J. Dull, D. D. Sleeter, and H. F. Noller. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Bio. 148:107-127.
Bruns, A., U. Nübel, H. Cypionka, and J. Overmann. 2003. Effect of signal compounds and incubation conditions on culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 69:1980-1989.
Brune, D. C., 1989. Sulfur oxidation by phototrophic bacteria. Biochim. Biophys. Acta. 975:189–221
Cho, J. C., and J. M.Tiedje. 2002. Quantitative detection of microbial genes by using DNA microarrays. Appl. Environ. Microbiol. 68:1425-1430.
Cohn, F. 1865. Zwei neue Beggiatoen. Hedwigia 4:81-84.
Cottrell, M. T., and D. L. Kirchman. 2000. Natural assemblages of marine proteobacteria and members of the Cytophage-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66:1692-1697.
Dictor, M. C., F. Battaglia-Brunet, D. Morin, A. Bories, and M. Clarens. 1997. Biological treatment of gold ore cyanidation wastewater in fixed bed reactors. Environ. Pollut. 97:287-294.
Ehrenoberg, C. 1830. Neue Beobachtungen über blutartige Erscheinungen in Ägypten, Arabien und Siberien, nebst einer Übersicht und Kritik der früher bekannten. Annal Phys. Chem.18:477-514.
Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial community. Appl. Environ. Microbiol. 62: 340-346.
Germida, J. J. 1998. Transformations of sulfur. In “Principles and Applications of Soil Microbiology” (D.M.Sylvia, J.J.Fuhrmann, P.G. Hartel, and D. A. Zuberer,eds.) Prentice-Hall, Upper Saddle River, NJ, pp.346-368.
Goebel, B. M., P. R. Norris, and N. P. Burton. 1999. Acidophiles in biomining. In Applied Microbial Systematics. Edited by F. G. Priest and M. Goodfellow. Dordrecht: Kluwer (in press).
Graff, A., and S. Stubner. 2003. Isolation and Molecular Characterization of thiosulfate-oxidizing bacteria from Italian rice field soil. Syst. Appl. Microbiol. 26:445-452.
Grigoryeva, N. V., Z. A. Avakyan, T. P. Tourova, T. F. Kondratyeva, and G. I. Karavajko. 1999. Screening and study of cyanide and thiocyanate degrading microorganisms. Mikrobiologiia 68:453-460.
Guitoneau, G., and J. Keiling. 1932. L’evolution et la solubilisation du soufre elementaire dans la terre arable. Annales Agronomiques N. S. 2:690-725.
Hallin, S., M. Rothman, and M. Pell. 1996. Adaptation of denitrifying bacteria to acetate and methanol in activated sludge. Water Res. 30:1445-1450.
Happold, F. C., K. I. Johnstone, H. J. Rogers, and J. B. Youatt. 1954. The isolation and characteristics of an organism oxidizing thiocyanate. J. Gen. Microbiol. 10:261-266.
Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. M. H.Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
Hiraishi, A., K. V. P. Nagashima, and Y. Katayama. 1998. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria : its transfer to genus Acidiphium as Acidiphilium acidophilum comb. nov. Int. J. Syst. Bacteriol. 48:1389-1398.
Hummerjohann, J., E. Küttel, M. Quadroni, J. Ragaller, T. Leisinger, and M. A. Kertesz. 1998. Regulation of the sulfate starvation respone in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology. 144: 1375-1386.
Hung, C.H., and S. G. Pavlostathis. 1997. Aerobic biodegradation of thiocyanate. Wat. Res. 31:2761-2770.
Katayama-Fujimura, Y., N.Tsuzaki, and H. Kuraishi. 1982. Ubiquinone, fatty acid and DNA base composition determination as guide to the taxonomy of the genus Thiobacillus. J. Gen. Microbiol. 128:1599-1611.
Katayama Y, Y. Narahara, Y. Inoue, F. Amano, T. Kanagawa, and H. Kuraishi. 1992. A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate." J. Biol. Chem. 267:9170-9175.
Katayama, Y., A.Hiraishi, and H. Kuraishi. 1995. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolthotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology. 141:1469-1477.
Katayama, Y., Y. Matsushita, M. Kaneko, M. Kondo, T. Mizuno, and H. Nyunoya. 1998. Cloning of genes coding for three subunits of thiocyanate hydrolase of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase. J. Bacteriol. 180:2583-2589.
Kelly, D. P., and A. P. Wood. 2000. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int. J. Syst. Bacteriol. 50:511-516.
Khan S. T., and A. Hiraishi. 2002. Diaphorobacter nitroreducens gen nov, sp nov, a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J. Gen. Microbiol. 48:299-308.
Khan, S. T., Y. Horiba, M. Yamamoto, and A. Hiraishi. 2002. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-hydroxyvalerate)- degrading dentrifiers in activated sludge as revealed by a polyphasic approach. Appl. Environ. Microbiol. 68:3206-3214.
Kreader, C. L. 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62:1102-1106.
Kunz, D. A., and O. Nagappan. 1989. Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764. Appl. Environ. Microbiol. 55:256-258.
Kuenen, J. G. 1975. Colorless sulfur bacteria and their role in the sulfur cycle. Plant and Soil. 43:49-76.
Kuenen, J. G., L. A. Robertson, and O. H. Tuovinen. 1992. The genera Thiobacillus, Thiomicrospira and Thiosphaera, p. 2638–2657. In A. Ballows H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (ed.), The prokaryotes, vol 3. Springer Verlag, New York, N.Y.
Lane, D. J., D. A. Stahl, G. J. Olsen, D. J. Heller, and N. R. Pace. 1985. Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequence. J. Bacteriol. 163:75-81.
Lane D. J., A. P. Harrison, D. Stahl, B. Pace, S. J. Giovanni, G. J. Olsen, and N. R. Pace. 1992. Evolutionary relationships among sulfur- and iron- oxidizing bacteria. J. Bacteriol. 174:269-278.
Lemmer, H., D. Roth, and M. Schade. 1994. Popualtion densities and enzymatic activities of heterotrophic bacteria in sewer biofilms and activated sludge. Water Res. 28:1341-1346.
Lüdemann, H., I. Arth, and W. Liesack. 2000. Spatial Changes in the Bacterial community structure along a vertical oxygen gradient in flooded paddy soil core. Appl. Environ. Microbiol. 66:754-762.
Mason, F., D. Harper, and M. Larkin. 1994. The microbial degradation of thiocyanate. Biochem. Soc. Trans. 22:423-428.
Mason, J., and D. P. Kelly. 1988. Thiosulfate oxidation by obligately heterotrphic bacteria. Microbial Ecology. 15:123-134.
McDonald, I. R., D. P. Kelly, J. C. Mureell, and A. P. Wood. 1997. Taxonomic relationships of Thiobacillus halophilus, Thiobacillus aqiqesulis and other species of Thiobacillus, as determined using 16S rRNA sequencing. Arch. Microbiol. 166:394-398.
Miller, D. N., J .E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65:4715-4724.
Moreira, D., and R. Amils. 1997. Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacillus : proposal for Thiomonas gen. nov. Int. J. Syst. Bacteriol. 47:522-528.
Mukhopadhyaya P.N., C. Deb, C. Lahiri, and P. Roy. 2000. A soxA gene encoding a diheme cytochrome c and a sox locus, essential for sulfur oxidation in a new sulfur lithotrphic bacterium. J. Bacteriol. 182:4278-4287.
Muyzer, G., E. C. del Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
Muyzer, G., A. Teske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164:165-172.
Nelson, D. C., and C. R. Fisher. 1995. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps, p.125-167. In D. M. Karl (ed.), The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, Fla.
Nelson, D. C., and H. W. Jannasch. 1983. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient culture. Arch. Microbiol. 136:262-269.
Nielsen, J. L., and P. H. Nielsen. 2002. Enumeratuin of actate-consuming bacteria by microautoradiography under oxygen and nitrate respiring conditions in activated sludge. Water Res. 36:421-428.
O’Sullivan, L. A., A. J. Weightman, and J. C. Fry. 2002. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S Ribosomal DNA-targeted oligonucleotude probes reveal high bacterial diversity in river Taff Epilithon. Appl. Environ. Microbiol. 68:201-210.
Payne, W. J. 1981. Denitrification, John Wiley and Sons, N. Y.
Rainey, F. A., D. P. Kelly, E. Stackebrandt, J. Burghardt, A. Hiraishi, Y. Katayama, and A. P. Wood. 1999. A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the creation of Paracoccus pantotrophus comb. nov. Int. J. Syst. Bacteriol. 49:645-651.
Robertson, L. A., R. Cornelisse, R. Zeng, and J. G. Kuenen. 1989. The effect of thiosulfate and other inhibitor of autotrophic nitrification on heterophic nitrifiers. Antonie van Leeuwenhoek. 56:301-309.
Schumacher, W., P. M. H. Kroneck, and N. Pfenning. 1992. Comparative systematic study on “Spirillum”5175, Campylobacter, and Wolinella species- description of “Spirillum”5175 as Sulfurospirillum deleyianum gen. nov. sp. nov. Arch. Microbiol. 158:287-293.
Seefeldt, L. C., M. E. Rasche, and S. A. Ensign. 1995. Carbonyl sulfide and carbon dioxide as new substrates and carbon disulfide as a new inhibitor of nitrogenase. Biochemistry. 34:5382-5389.
Sekiguchi, Y., Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura. 1998. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rDNA gene analysis. Microbiol. 144:2655-2665.
Sokolova, G. A., and G. I. Karavaiko. 1968. Physiology and geochemical activity of thiobaciili. Translated from Russian (1964), E. Rabinovitz (ed.). Israel Programme for Scientific Translations Ltd., Jerusalem.
Sorokin, D. Y., T. P. Tourova, A. M. Lysenko, and J. G. Kuenen. 2001. Microbial thiocyanate utilization under highly alkaline conditions. Appl. Environ. Microbiol. 67:528-38.
Stafford, D. A., and A. G. Callely. 1969. The utilization of thiocyanate by a heterotrophic bacterium. J. Gen. Micriobiol. 55:285-289.
Stratford, J., A. E. Dias, and C. J. Knowles, 1994. The utilization of thiocyanate as a nitrogen source by a heterotrophic bacterium: the degradative pathway involves formation of ammonia and tetrathionate. Microbiology. 140:2657-2662.
Stolz, J. F., D. J. Ellis, J. S. Blum, D. Almann, D. R. Lovley, and R. S. Oremland. 1999. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of Sulfurospirillum clade of the epsion Proteobacteria. Int. J. Syst. Bacteriol. 49:117-1180.
Timmer ten Hoor, A. 1997. Denitrifcerende kleurloze zwavelbacterien, PhD thesis, University of Groningen.
Watanabe, K., M. Teramoto, and S. Harayama. 1999. An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated-sludge process. Appl. Environ. Microbiol. 65:2813-2819.
Wilderer, P. A., H. J. Bungartz, H. Lemmer, M. Wagner, and J. Keller. 2002. Modern scientific methods and their potential in wastewater science and technology. Water Res. 36:370-393.
Woese, C. R., W. G. Weisburg, B. J. Paster, C. M. Hahn, R. S. Tanner, N. R. Krieg, H. -P. Koops, H. Harms, and E. Stackebrandt. 1984. The phylogeny of purple bacteria : the beta subdivison. Syst. Appl. Microbiol. 5:327-336.
Wood, A.P., D. P. Kelly, I. R. McDonald, S. L. Jordan, T. D. Morgan, S. Khan, J. C. Murrell, and E. Borodina. 1998a. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol. 169:148-58.
Wood, J. L. 1975. Biochemistry, p. 156-221. In A. A. Newman (ed.), Chemistry and biochemistry of thiocyanate acid and its derivatives. Academic Press, New York, N. Y.
Wood, P. M. 1998b. Chemolithotrophy. In Anthony, C. (ed.) Bacterial Energy Transduction Acdemic Press, London, UK, pp.183-230.
Youatt, J. B. 1954. Studies on the metabolism of Thiobacillus thiocyanoxidans. J. Gen. Microbiol. 11:139-49.