簡易檢索 / 詳目顯示

研究生: 高承豪
Kao, Cheng-Hao
論文名稱: 使用轉導與電容的頻率平移技術之N路徑濾波器之頻率鍵移與開關鍵控喚醒接收機
An Ultra-Low-Power FSK/OOK Wake-up Receiver Using Tunable N-Path Filtering Techniques
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 喚醒接收機轉導與電容N路徑濾波器頻率鍵移開關鍵控低功耗
外文關鍵詞: WuRx, gm-C filter, N-path Filter, FSK, OOK, low Power
相關次數: 點閱:139下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出應用於433百萬赫茲之低功耗喚醒接收機,能夠做頻率鍵移及開關鍵控之解調變,並使用N路徑濾波器來改善其靈敏度。在前端電路使用電流再利用的低雜訊放大器與疊接邊緣結合混頻器,以節省功耗與減輕本地振盪器的負擔,其後使用N路徑濾波器來取代高品質因數之外部元件,並在N路徑濾波器搭配轉導與電容的頻率平移技術來位移頻率,不僅能應用於解調變也讓頻率的使用更具彈性。本晶片使用90奈米互補式金屬氧化物半導體製程製造,並操作在433百萬赫茲,其數據速率為100千比特每秒,預期能達到-100dBm之靈敏度,電源供應為1伏特,功率消耗約為218微瓦特。

    This paper proposes an Ultra-low-power wake-up receiver, which can support frequency shift keying (FSK) and on-off keying (OOK) demodulation schemes, and uses N-path filter to improve its sensitivity. In the front-end circuit, a low-noise amplifier with current reuse and a stacked edge-combined mixer are used to save the power consumption and reduce the burden of the local oscillator. An N-path filter is used to replace the external bulky devices with high quality factor. In addition, the N-path filter is combined with the gm-C frequency shifting technology, to demodulate the FSK signal. The chip is fabricated using a 90nm CMOS process and operates at 433 MHz with a data rate of 100 kb/s, an expected sensitivity of -100 dBm, supply voltage of 1V, and a power consumption is 218 μW.

    目錄 圖目錄 XI 表目錄 XV 第一章 序論 1 1.1 無線節點網路所需規格 1 1.2 在節點網路的佔空比控制 2 1.3 喚醒接收機規格 4 1.3.1 功率消耗與數據速率 4 1.3.2 靈敏度 5 1.4 論文之章節 7 第二章 文獻回顧 8 2.1 喚醒接收機 8 2.1.1 包絡檢測器架構 8 2.1.2 低中頻架構 9 2.1.3 非精準中頻架構 10 2.1.4 超再生架構 11 2.1.5 N路徑濾波器架構 12 2.2 結論 13 第三章 喚醒接收機全電路架構 14 3.1 全電路架構介紹 14 3.1.1 整體頻率計畫 17 3.2 濾波器架構 20 3.2.1 N路徑濾波器 20 3.2.2 第一中頻之N路徑濾波器 26 3.2.3 解調變與N路徑濾波器 27 3.3 解調變與gm-C頻率平移技術 28 3.4 子電路架構 34 3.4.1 低雜訊放大器與電流再利用混頻器 34 3.4.2 本地振盪器 47 3.4.3 中頻放大器 54 3.4.4 包絡檢測器 57 3.4.5 比較器 61 3.5 模擬結果 63 3.5.1 喚醒接收機模擬 63 3.5.2 晶片佈局圖 67 3.5.3 喚醒接收機佈局後模擬 68 第四章 量測結果 73 4.1 量測設置 73 4.2 量測結果 76 第五章 結論及未來展望 82 5.1 結論 82 5.2 未來展望 82 5.2.1 面積消耗 82 5.2.2 本地振盪頻率 82 5.2.3 QPSK 解調變 83 References 83

    [1] I. F. Akyilidiz, S. Weilian, Y, Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks, “ IEEE Communications Magazine, vol, 40, no. 8, pp. 102-114, 2002.

    [2] N. M. Pletcher, “Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks,” Ph.D., Univ. California, Berkeley, California, U.S., 2008.

    [3] J. Blanckenstein, J. Klaue, and H. Karl, “A survey of Low-Power Transceivers and Their Applications,” IEEE Circuits and System Magazine, vol. 15, no. 3, pp. 6-17, 2015

    [4] J. Moody et al. , “A -76dBm 7.4mW wakeup radio with automatic offset compensation,” in IEEE ISSCC Dig. Tech. Papers, 2018, pp. 452-454.

    [5] J. Pandey, J.Shi, and B. Otis, “ A 120μW MICS/ISM-band FSK receiver with a 44μW low-power mode based on injection-locking and 9x frequency multiplication, “ in IEEE ISSCC Dig. Tech Papers, 2011, pp. 460-462.

    [6] J. Bae, N. Cho, and H. Yoo, “ A 490μW fully MICS compatible FSK transceiver for implantable devices, “ in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 36-37.

    [7] S. Drago, D. M. W. Leenaerts, F. Sebastiano, L. J. Breems, K. A. A. Makinwa, and B. Nauta, “A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with -82dBm sensitivity for crystal-less wireless sensor nodes,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 224-225.

    [8] N. M. Pletcher, S. Gambini, and J. M. Rabaey, “A 2GHz 52μW Wake-Up Receiver with -72dBm Sensitivity Using Uncertain-IF Architecture,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 524-633.

    [9] B. Otis, Y. H. Chee, and J. Rabaey, “A 400μW-RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks, “ in IEEE ISSCC Dig. Tech. Papers, 2005, pp. 396-606 Vol. 1.

    [10] C. Salazar, A. Kaiser, A. Cathelin, and J. Rabaey, “ A -97dBm sensitivity interferer-resilient 2.4GHz wake-up receiver using dual-IF multi-N-Path architecture in 65nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2015, pp. 1-3.

    [11] M. Darvishi, R. v. d. Zee, E. A. M. Klumperink, and B. Nauta, “ Widely Tunable 4th Order Switched Gm-C Band-Pass Filter Based on N-path Filters,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3105-3119, 2012.

    [12] L. XiaoYong, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2919, 2005.

    [13] C. Andrews and A. C. Molnar, “Implications of Passive Mixer Transparency for Impedance Matching and Noise Figure in Passive Mixer-First Receivers,” IEEE Trans. Circuits Syst. I, vol. 57, no. 12, pp. 3092-3103, 2010.

    [14] C. Salazar, “Ultra-low power wake-up receivers using N-path filtering techniques,” Ph.D., Univ. Lille, Lille, France, 2015.

    [15] Nikoofard, Ali search by orcid ; Zadeh, Hamed Abbasi ; Mercier, Patrick P.” A 0.6-mW 16-FSK Receiver Achieving a Sensitivity of −103 dBm at 100 kb/s” IEEE J. Solid-State Circuits, vol. 56, issue 4, pp. 1299-1309, 2021.

    [16] Charan Langton,”Intuitive Guide to Principles of Communications”.

    [17] F. Belmas, F. Hameau, and J. M. Fournier, “A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1094-1103, 2012.

    [18] B. Razavi, RF Microelectronics, 2nd ed. 2011.

    [19] Shruti Suman; K. G. Sharma; P. K. Ghosh,” Analysis and design of current starved ring VCO,” ICEEOT, 2016.

    [20] T. C. Carusone, Analog Integrated Circuit Design, 2nd ed. 2011.

    [21] E. Martens, B. Hershberg and J. Craninckx, “Wide-tuning range programmable threshold comparator using capacitive source-voltage shifting,” ELECTRONICS LETTES, Vol. 54, No. 25, pp. 1417–1418.

    [22] J. L. Bohorquuez, A. P. Chandrakasan, and J. L. Dawson, “A 350μW CMOS MSK Transmitter and 400μW OOK Super-Regenerative Receiver for Medical Implant Communications,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1248-1259, 2009.

    [23] T. Abe et al., “An ultra-low-power 2-step wake-up receiver for IEEE 802.15.4g wireless sensor network, “ in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1-2.

    [24] C. Bryant and H. Sjoland, “A 2.45GHz, 50μW wake-up receiver front-end with -88dBm sensitivity and 250kbps data rate,” in Proc. IEEE 40th Eur. Solid-State Circuits Conf.(ESSCIRC), 2014, pp. 235-238.

    [25] H. Jiang et al., ”A 4.5nW wake-up radio with -69dBm sensitivity,” in IEEE ISSCC Dig. Tech. Papers, 2017, pp. 416-417.

    [26] A. S. Rekhi and A. Arbabian, “A 14.5 mm2 8nW -59.7dBm sensitivity ultrasonic wake-up receiver for power-, area-, and interference-constrained applications,” in IEEE ISSCC Dig. Tech. Papers, 2018, pp. 454-456.

    [27] Keun-Mok Kim, Hyun-Gi Seok, Oh-Yong Jung, Kyung-Sik Choi, Byeonghun Yun, Subin Kim, Wonkab Oh, Eui-Rim Jeong, Jinho Ko , Sang-Gug Lee “A –123-dBm Sensitivity Split-Channel BFSK Reconfigurable Data/Wake-Up Receiver for Low-Power Wide-Area Networks,” IEEE Journal of Solid-State Circuits, vol. 56, no. 9, pp. 2656 - 2667, 2021.

    [28] Seokwon Lee; Daechul Jeong; Bumman Kim, “Ultralow-Power 2.4-GHz Receiver With All Passive Sliding-IF Mixer,” in IEEE Transactions on Microwave Theory and Techniques, 2018, pp. 2356-2362.

    [29] Hyun-Gi Seok; Oh-Yong Jung; Anjana Dissanayake; Sang-Gug Lee,” A 2.4GHz, −102dBm-sensitivity, 25kb/s, 0.466mW interference resistant BFSK multi-channel sliding-IF ULP receiver,” in 2017 Symposium on VLSI Circuits.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE