| 研究生: |
張宇倫 Chang, Yu-Lun |
|---|---|
| 論文名稱: |
反應式共濺鍍製程參數對氮化鉭矽薄膜電阻溫度係數之影響及其應用研究 Effect of process parameters on Ta-Si-N thin films' temperature coefficient of resistance by reactive co-sputtering and their applications |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 鉭-矽-氮薄膜 、製程參數 、溫度感測元件 |
| 外文關鍵詞: | sensor, parameter effect, Ta-Si-N |
| 相關次數: | 點閱:62 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用反應式磁控共濺鍍系統成長出鉭-矽-氮(Ta-Si-N)的奈米複合薄膜,並利用快速退火爐進行不同溫度的熱穩定檢測。主要探討反應氣體-氮氣比例、功率及基板偏壓等製程參數,對氮化鉭矽奈米複合薄膜微結構、成份、電阻率、電阻溫度係數之影響與關係。
本文藉由控制鉭靶與矽靶的功率,搭配不同的氮氣流量以進行反應式磁控共濺鍍,以成長出不同成分及微結構的鉭-矽-氮薄膜。並藉由500 °C快速退火爐的熱處理後,探討薄膜的熱穩定性。最後將其以四點探針(Four Point Method)與膜厚量測計算薄膜電阻率,以四點探針組合I-V量測平台以測量電阻溫度係數 (Temperature Coefficient of Resistance TCR),以低掠角X-ray繞射儀 (Glancing Incident Angle X-Ray Diffraction)分析其微結構與結晶相,使用原子力顯微鏡 (Atomic Force Microscope)觀察薄膜表面形貌,利用能量散佈光譜儀 (Energy Dispersive Spectroscopy)與歐傑電子能譜儀 (Auger Electron Spectroscopy)檢測薄膜的組成。
實驗結果顯示,Ta-Si-N薄膜的電阻率隨製程參數變化,約為300至1,400,000 μΩ-cm,並隨著氮氣流量比的上升而增加。當氮氣流量比為2- 10%時,微結構為類非晶-奈米晶粒的結構,其表面形貌相對緻密且TCR值較低。當氮氣流量比達到20%時,會轉換為多晶的微結構,其表面形貌會較鬆散,界面較明顯,但TCR值會大幅上升。A組中有較多矽成份,會提高熱穩定性。總體而言,矽靶功率對薄膜性質的影響不如氮氣比例的改變明顯,所以當氮氣流量比為5%時,會有最佳穩定性及較低TCR值。預期可應用薄膜電阻領域上。氮氣流量比為30%時,具較高的TCR值薄膜則適合應用在感測的元件上。使用離子乾式蝕刻,配合SF6及CF4兩種氣體,可以成功的對Ta-Si-N薄膜蝕刻在薄膜上定義圖案。而藉由剝離法 (Lift-Off)亦可在矽基材及高份子基材上沈積Ta-Si-N薄膜並成功定義圖案,以製作簡易的溫度感測元件,其TCR結果約在-7600 ppm/°C
n this study, Ta-Si-N nanocomposite thin films were deposited by reactive co-sputtering system. The study focuses on process parameters effect on thin film structure, composition, resistivity and temperature coefficient of resistance.
Ta-Si-N films were prepared by different tantalum, silicon target powers, nitrogen flow rate and bias to deposit different micro-structure and composition thin films. In order to realize thermal stability of films, Ta-Si-N films were annealed by RTA at 500 °C for one minute. The resistivity, TCR, crystallographic structures, surface morphology and composition, were investigated by α-step, four-point probe with I-V measurement system, grazing incident angle X-ray diffraction (GIAXRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM).
Results showed the resistivty increasing not only silicon power but N2 flow rate. As low N2 flow rate, thin film resistivity was about 300 μΩ-cm and it increased to 1,400,000 μΩ-cm at high N2 flow rate. At low N2 flow rate, the structure remained amorphous-like and surface morphology kept smooth. The TCR values were lower as at low flow rates from 3 to 10% and they had good performance for thin film resistors. However, at high N2 flow rate, the structure turned to crystalline and Ta-Si-N surface morphology changed to rough. The TCR values were large at high N2 flow rate as 30%, it could reach -8000 ppm/°C and it had great performance for sensing element. Ta-Si-N films could be etched by SF6 and CHF3 and they could also be fabricated successfully on silicon and liquid crystalline polymer substrate. It means Ta-Si-N films could apply on sensors and have good performance as -7600 ppm/°C.
[1] 李言榮, 惲正中, “材料物理學概論”, 五南圖書出版公司, 2003
[2] S.C. Tjnog and H. Chen, “Nanocrystalline materials and coatings”, Materials Science and Engineering R, Vol. 45, pp. 1, 2004.
[3] S. PalDey and S.C Deevi, “Single layer and multilayer wear resistant coating of (Ti, Al)N: a review”, Materials Science and Engineering A, Vol. 342, pp. 58, 2003.
[4] M.L. Lovejoy, G.A Patrizi, D.J Reiger and C. Barbour, “Thin-film tantalum-nitride resistor technology for phosphide-based optoelectronics” Thin Solid Films, Vol. 290-291, pp. 513, 1996
[5] M-A. Nicolet, “Reactively sputtered ternary films of the type TM–Si–N and their properties (TM=early transition metal)”, Vacuum, Vol.59, pp. 716, 2000
[6] M-A. Nicolet and P.H. Giauque, “Highly metastable amorphous or near-amorphous ternary (mictamict alloys)”, Materials Science and Engineering, Vol. 55, pp. 357, 2001
[7] E. Kolawa, J.M. Molarius C.W Chen and M-A. Nicolet, “Amorphous Ta-Si-N thin films alloy as diffusion barrier in Al/Si interconnections”,Jouranl of Vacuum Science, Vol.8, pp. 3006, 1990.
[8] E. Kolawa, P.J. Pokela, J.S. Reid, J.S. Chen and M-A. Nicolet, “Amorphous Ta-Si-N diffusion barriers in Si/Al and Si/Cu metallizations”, Applied Surface Science, Vol. 53, pp. 373, 1991.
[9] E. Kolawa, J.S. Chen, J.S. Reid, P.J. Pokela and M-A. Nicolet, “Tantalum-Based diffusion barrier in Si/Cu VLSI metallizations”, Journal of Applied Physics, Vol. 70, pp. 1369, 1991
[10] E. Kolawa, P.J. Pokela, J.S. Chen, R.P. Ruiz and M-A. Nicolet, “Sputtered Ta-Si-N diffusion barriers in CU metallizations for Si”, IEEE Electron Device Letters, Vol. 12, pp. 321, 1991
[11] 刑泰剛, “微機電系統技術與應用”, 行政院國家科學委員會精密儀器發展中心出版.
[12] 枊克強, 張家豪, “真空技術與應用”, 行政院國家科學委員會精密儀器發展中心出版.
[13] 莊達人, “VLSI製造技術”, 高立圖書出版, 2002
[14] Kucjuk, E. Kaminska, A. Piotrowska, K. Golaszewska, E. Dynowska, O.S. Lytvyn, L. Nowicki and R. Ratajczak, “Amorphous Ta–Si–N diffusion barriers on GaAs”, Thin Solid Films, Vol. 459, pp. 292-296, 2004.
[15] S. Veprek and S. Reiprich, “A concept for the design of novel superhard coating”, Thin Solid Films, Vol. 268, pp. 64, 1995.
[16] J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology, Vol. 125, pp. 322, 2000.
[17] S. Veprek, “Different approaches to superhard coating and nanocomposites”, Thin Solid Films, Vol. 476, pp. 1, 2005.
[18] S. PalDey and S.C Deevi, “Single layer and multilayer wear resistant coating of (Ti, Al)N: a review”, Materials Science and Engineering A, Vol. 342, pp. 58, 2003.
[19] 賴豊文, “鉭-矽-氮薄膜之特性與作為擴散阻障層之研究”, 國立成功大學材料科學及工程學系碩士論文, 中華民國九十二年.
[20] E. Kolawq, J.M. Molarius, C.W. Nieh and M-A Nicolet, “Amousphous Ta-Si-N thin film alloy as diffusion barrier in Al/Si interconnections”, Journal of Vacuum Science and Technology A, Vol. 8, pp. 3006, 1990.
[21] F. Letendu, M.C. Hugon, B. Agius, I. Vickridge, C. Berthier and J.M. Lameille, “TaSiN diffusion barriers deposited by reactive magnetron sputtering”, Thin Solid Films, Vol. 513, pp. 118-124, 2006.
[22] T. Hara, M. Tanaka, K. Sakiyama and S. Omishi, “Barrier properties for oxygen diffusion in a Ta-Si-N layer”, Japan Journal of Apply Physics, Vol.36. pp. L895, 2002.
[23] J. Vandooren, A. barr, L. Mathew, T.R. Whites, S. Egley, D. Pham, M. Zavala, S. Samavedam, J. Schaeffer, J. Conner, B.Y. Nguyen, B.E. White, “Fully-depleted SOI devices with TaSiN gate HFO2 gate dielectric, and elevated source/drain extensions”, IEEE Electron Device Letters, Vol.24, pp.342, 2003
[24] J. W. Nah, S. K. Hwang, and C. M. Lee, “Development of a complex heat resistant hard coating based on (Ta, Si)N by reactive sputtering”, Materials Chemistry and Physics, Vol.62, pp.115, 2000.
[25] J. W. Nah, W. S. Choi, S.K. Hwang, C.M. Lee, “Chemical state of (Ta, Si) N reactively sputtered coating on a high-speed steel substrate”, Surface and Coatings Technology, Vol.123, pp.1, 2000.
[26] M. Oizumi, K. Aiko and Y. Fukuda, “Temperature dependence of TaSiN thin film resistivity from room temperature to 900 degrees C”, Japan Journal of Apply Physics, Vol.42, pp. L603, 2001.
[27] 陳泰盛, “反應式共濺鍍鉭-矽-氮奈米複合薄膜之微結構與機械性質研究”, 國立成功大學機械工程學系碩士論文, 中華民國九十五年.
[28] M.P. Nguyen and S.G. Yoon, “Effect of deposition temperature on the structural and electrical properties of NiCr thin-film resistors by magnetron cosputtering”, Journal of the Electrochemical Society, Vol.153, pp. G606, 2006
[29] S. Vinayak, H.P. Vyas, K. Muraleedharan and V.D. Vankar, “Ni-Cr thin film resistor fabrication for GaAs monolithic microwave integrated circuits”, Thin Solid Films, Vlo.514, pp. 52-57, 2006
[30] N.D Cuong, D.J Kim, B.D. Kang and S.G. Yoon“Characterization of tantalum nitride thin films deposited on SiO2 Si substrates using dc magnetron sputtering for thin film resistors”, Journal of the Electrochemical Society, Vol.153, pp. G164, 2006.
[31] N.D. Coung, D.J. Kim, B.D. kang, C.S. Kim, K.M. Yu and S.G. Yoon“Effects of nitrogen concentration on structural and electrical properties of titanium nitride for thin-film resistor applications”, Electrochemical and Solid State Letters, Vol.9, pp. G279-G281, 2006.
[32] N.D Cuong, D.J Kim, B.D. Kang and S.G. Yoon“Structural and electrical characterization of tantalum nitride thin film resistors deposited on AlN substrates for π-type attenuator applications”, Materials Science and Engineering B, Vol.135, pp. G162, 2006.
[33] S. Veprek, “New development in superhard coatings: the superhard nanocrystalline-amorphous composites” Thin Solid films, Vol.317, pp. 449, 1998
[34] S. Veprek, “A concept for the design of novel superhard coating” Thin Solid films, Vol.268, pp. 64, 1995
[35] J.S Lee, J.W. Park and S.M. Shin, “Fabrication of a micro catalytic gas sensor using thin film process and Si anisotropic etching techniques”, Sensors and Actuators B, Vol.45, pp. 265, 1997.
[36] H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W.D. Ceuninck and L.D Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors”, Sensors and Actuators B, Vol.65, pp. 190, 2000.
[37] F. Mailly, A. Giana, R. Bonnot, P. Temple-Boyer, F. Pascal-Delannoy, A. Foucaran and A. Boyer, “Anemometer with hot platinum thin film”, Sensors and Actuators A, Vol.94, pp. 32, 2001.
[38] K. Tsutsumi, A. Yamashita, H. Ohji, “The experimental study of high TCR Pt thin films for thermal sensors”, IEEE MEMS, 2002.
[39] M.O. Yang, “Measurement of effective absorptance on microbolometers”, IEEE MEMS, 2006.
[40] S. Noh, E. Lee, J. Seo and M. Mehregany, “Electrical properties of nickel oxide thin films for flow sensor application”, Sensors and Actuators A, Vol.125, pp. 363, 2006.
[41] H. Wada and M. Nagashima, SPIE, Vol.9, pp. 3379, 1998
[42] C. Chen, X. Yi, J. Zhang and X. Zhao, “Linear uncooled microbolometer array based on VOx thin films”, Infrared Physics Technology, Vol.42, pp. 87, 2001.
[43] B.E. Cole, R.E. Higashi and R.A. Wood, IEEE MEMS, Vol.86, pp. 1679, 1998.
[44] J.J Van Den Broek, J.J.T.M. Donkers, R.A.F. Van Der Rijt and J.T.M. Janssen, “Metal film precision resistors Resistive metal films and a new resistor concept”, Philips Journal of Research, Vol. 51, pp. 429, 1998.
[45] R. Sanjinés, M. Benkahoul, C.S. Sandu, P.E. Schmid and F. Lévy, “Relationship between the physical and structural properties of NbzSiyNx thin films deposited by dc reactive magnetron sputtering”, Journal of Applied Physics, Vol.98, pp. 123511, 2005
[46] A. Higro, G. Nobile, M.G. Rubino and R. Vaglio, “Electrical resistivity of polycrystalline niobium nitride films”, Physical Review B, Vol.37, pp. 3970, 1988.
[47] K.Wasa and S. Hayakawa, “Structures and resisitive properties of sputtered Ti-Zr-Al-N thin films”, Thin Solid Films, Vol.10, pp. 367, 1972.
[48] G.F. Mclane, L. Casas, J.S. Reid, E. Kolawa, M-A. Nicolet, “TaSiN etching_reactive ion etching of TaSiN diffusion barriers in CF4+O2” Journal of Vacuum Science and Technology B, Vol.12, pp. 591, 1994.
[49] G.F. Mclane, L. Casas, J.S Reid and M-A. Nicolet, “Reactive ion etching of Ta-Si-N diffusion barriers in CHF3 +O2” Electronics Letters, Vol.31, pp. 591, 1995.
[50] M-A Gr´ etillat, C Linder, A Dommann, G Staufert, N F de Rooij and M-A Nicolet, “Surface-micromachined Ta–Si–N beams for use in micromechanics”, Journal of Micromecheining and Microengineering, Vol.8, pp. 88, 1998.