簡易檢索 / 詳目顯示

研究生: 吳聲暉
Wu, Sheng-Hui
論文名稱: 雪山隧道開鑿滲流量與翡翠水庫進流量相關性之研究
The Study on the Relation between Seepage of the Shiue-Shun Tunnel and the Inflow of the Fei-Tsuei Reservoir
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 進流量基流資料估計法隧道滲流MODFLOW翡翠水庫
外文關鍵詞: base-flow record method, MODFLOW, Fei-Tsuei Reservoir, inflow, tunnel seepage
相關次數: 點閱:149下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

      本研究目的在於先以基流資料估計法推估翡翠水庫集水區之地下水補注量並探討基流量變化與雪山隧道開鑿湧水變化之相關性。再利用數值解以及解析解推估隧道開鑿之湧水量並與實際湧水量做一比較,以作為後續相關工程之參考。最後以數值方法建立翡翠水庫集水區之三維數值模式,模擬隧道東口與西口開鑿對集水區地下水位之影響藉以評估隧道開鑿湧水與翡翠水庫進流量變異之相關性相關性。

      利用基流資料估計法與低流分析所推估出之翡翠水庫集水區地下水補注量分別為3.93億噸/年與3.0億噸/年,而根據現場量測資料隧道湧水約3.75~5.09百萬噸/年,共佔地下水補注量約1.25~1.70%。根據1996至1998逐月基流量變化與湧水量變化之關係則可看出在1996/03至1996/07、1997/05至1997/10與1998/03至1998/12間兩者增減變化的趨勢是相同的,意味翡翠水庫集水區與隧道沿線可能存在有地下的連通管道,故兩者間會有相互之影響。

      在推估隧道湧水量方面,以解析模式推估TBM第十次受困處(里程39K+074)之隧道湧水量約為163~168L/sec之間,與實際湧水量150~180L/sec相符。不過以數值模式推估出之二維與三維湧水量分別為12.00與1.68L/sec與實際湧水量差異甚大。

      以數值方式所建構出翡翠水庫集水區之三維模擬場模擬隧道東段與西段開挖湧水對集水區地下水位之影響結果顯示,東段因為位於頭城端之集水區,所以雖然湧水量較西段大,但是影響相當輕微,模擬90天後僅造成相鄰邊界約1%的水位變化。而西段在湧水範圍3公里內地下水位洩降最大亦僅有3.37%的變化,故推測雪山隧道開鑿湧水對集水區之地下水位變化影響極微。

    Abstract

     Fei-Tsuei Reservoir is the main source of water supply in Taipei. The purposes of this study were to investigate the impact of the excavation of Shiue-Shun tunnel on water supply. The base-flow record method was used to estimate groundwater recharge and to separate base-flow from daily river inflow at the watershed of Fei-Tsuei Reservoir. The diversity of water amount due to the change of monthly base-flow and the excavation of Shiue-Shun tunnel was also discussed. The 2-D and 3-D hydrogeological models were established for the watershed of Fei-Tsui Reservoir. The numerical solutions with MODFLOW and analytical solutions were used to estimate the seepage during tunnel excavation and then compare it with field measurement. The model calibration was also performed in terms of groundwater level when the east and west entrances of Shiue-Shun tunnel were excavated.

     The results showed that the estimate of the groundwater recharge of Fei-Tsui Reservoir was 0.39 billion tons per year and 0.3 billion tons per year for the base-flow record method and the low-flow analysis, respectively. The filed investigated result showed that the seepage of the excavation of Shiue-Shun tunnel was about from 3.75 to 5.09 million tons per year. It indicated that the seepage of the excavation tunnel is only in the ratio range between 1.25% to 1.70% of groundwater recharge. On the other hand, according to the relationship between base-flow variation per month and the excavation change during 1996 to 1998, especially during 1996/03~1996/07, 1997/05~1997/10 and 1998/03~1998/12, it showed that the positive correlation is provided in terms of the relation between the seepage of the tunnel and the base-flow of the watershed of the Fei-Tsui reservoir. It could imply that there exit the connected channels between the watershed and tunnel.

     The results of the analytical model showed that the tunnel inflow amount at TBM 10th besieged place (mileage is 39K+074) was in the range between 163 to 168(L/sec) with which was corresponded to the real field amount between 150 and 180(L/sec). On the other hand, results of 2-D and 3-D numerical model were provided that the inflow were 12.00 and 1.68(L/sec) respectively. It indicated that the inflow from 2-D and 3-D numerical model were difference from real field amount.

     The 3-D model was also used to simulate the impact of the inflow of tunneling excavation at eastern and western part on ground water recharge on the watershed of Fei-Tsui Reservoir. The results show that the excavated inflow of eastern part was larger than that of western part. The effect of the excavated inflow of eastern part on ground water recharge on Tou-Cheng Watershed was quietly less significant. When the tunnel was excavated after 90 days, only 1% variation and 3.37% variation of groundwater level drawdown of groundwater level at the eastern part and in the western part respectively within the range of the radius 3 kilometers. In conclusion, the effect of excavation advance of Shiue-Shun tunnel on the change of groundwater level of watershed of Fei-Tsui Reservoir is less significant.

    目錄 中文摘要……………………………………………………I 英文摘要…………………………………………………III 誌謝…………………………………………………………V 目錄…………………………………………………………VI 表目錄………………………………………………………IX 圖目錄………………………………………………………X 符號說明…………………………………………………XIII 第一章 緒論……………………………………………1 1.1研究動機與目的………………………………………1 1.2前人研究………………………………………………2 1.2.1地下水補注量推估之相關文獻……………2 1.2.2湧水量推估與地下水模擬之相關文獻……3 1.2.3雪山隧道開鑿滲流量與翡翠水庫進流量相 關性之研究…………………………………5 1.3研究方法與流程………………………………………6 第二章 雪山隧道概述…………………………………8 2.1施工簡介………………………………………………8 2.2地質概況………………………………………………12 2.3導坑湧水概況…………………………………………17 第三章 翡翠水庫流域水文概況與河川流量分析……20 3.1區域概述………………………………………………20 3.2水文資料簡介…………………………………………22 3.2.1水位…………………………………………22 3.2.2降雨量………………………………………24 3.3水文分析………………………………………………26 3.4河川流量資料分析……………………………………30 3.4.1基流資料估計法與低流分析………………30 3.4.2集水區地下水補注量推估…………………32 3.4.3基流量與隧道開鑿湧水量之關係…………38 3.4.4基流量與翡翠水庫進流量之相關性………41 第四章 雪山隧道湧水量評估與概念性區域地下水流數 值模擬…………………………………………43 4.1數值模式簡介…………………………………………43 4.1.1MODFLOW介紹………………………………43 4.1.2地下水流方程式………………………….46 4.2雪山隧道開鑿湧水量評估……………………………47 4.2.1案例概述………………………………….47 4.2.2地質參數設定…………………………….49 4.2.3湧水量解析模式………………………….58 4.2.4湧水量二維數值模式推估……………….60 4.3翡翠水庫集水區三維地下水流數值模擬……………63 4.3.1邊界範圍、邊界條件及網格劃分……….63 4.3.2地質參數設定…………………………….65 4.3.3三維模式驗證…………………………….66 4.3.4三維隧道開挖湧水量推估……………….66 4.3.5湧水量推估二維與三維模式結果比較與分 析………………………………………….67 4.3.6隧道開鑿地下水位變化模擬…………….68 第五章 結論與建議……………………………………73 5.1結論……………………………………………………73 5.2建議……………………………………………………74 參考文獻……………………………………………………75 附錄…………………………………………………………80

    參考文獻

    1.Burgess, A.,“Groundwater Movement around a Repository-Regional Groundwater Flow Analysis”, KBS Vol.54, No.3, pp.116, Stockholm, Sweden(1977).
    2.Carlsson, A., and Olaaon, T., “Water Leakage in the Forsmark Tunnel”, Upland, Sweden, Sver, Geology, Unders. C734, Stockholm, Sweden(1977).
    3.Chen, W. P., and C. H. Lee, “Estimating ground-water recharge from streamflow records”, Environmental Geology, Vol.44, pp. 257-265(2003).
    4.Chisyaki, T., “A study on confined flow of ground water through a tunnel”, Ground Water, Vol.22, No 2, pp. 162-167 (1984).
    5.Chiang, W.H., and Kinzelbach, W., Procession Modflow For Windows(Version 4.00), Hamburg, Germany(1998).
    6.El Tani, M., “Circular tunnel in a semi-infinite aquifer, Tunneling and Underground Space Technology”, Vol.18, pp.49-55(2003).
    7.Environmental Simulations, Inc., Groundwater Vistas (Version 3), (2002).
    8.Forster, C., and L. Smith, “Groundwater flow system in mountainous terrain,2. Controlling factors”, Water Resources Research, Vol.24, No.7, pp.1011-1023(1988).
    9.Goodman R. E., D. J. Moye, A. Van Schalkwyk , and I. Javandel, “Groundwater inflows during tunnel driving”, Engineering Geology, Vol.2, pp. 39-56(1965).
    10.Kim, Y. Y., and K.K. Lee, “Disturbance of groundwater table by subway construction in the Seoul area”, Korea, Geosciences Journal, Vol.7 No.1, pp.37-46(2003).
    11.Koji HAYASHI, Kenichi UCHINO, and Masahiro INOUE, “Study on the change of pumpage and drainage of mine water in a coal mine”, The Mining and Materials Processing Institute of Japan, Vol.120, pp.372-379(2004).
    12.Lee, I. M., and S. W. Nam, “The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels”, Tunneling and Underground Space Technology, Vol.16 No.1, pp.31-40(2001).
    13.Lee, I. M., and S. W. Nam, “Effect of advance rater on seepage forces acting on the underwater tunnel face”, Tunneling and Underground Space Technology, Vol.19, pp.273-281(2004).
    14.Lee, I. M., Nam S.W., and Ahn J.H., “ Effect of seepage forces on tunnel face stability”, Canadian Geotechnical Journal, Vol.40, No.2, pp.342-350(2003).
    15.Lei, S., “An analytical solution for steady flow into a tunnel”, Ground Water, Vol.37, No.1, pp.23-26(1999).
    16.Lipponen, A., S. Manninen, H. Niini, and E. Ronka, “Effect of water and geological facture zones in the Paijanne Tunnel, Finland: a case study”, International Journal of Rock Mechanics and Mining Sciences, Vol.42, pp.3-12(2005).
    17.Louis, C., Rock Hydraulics, in Rock Mechanics (ed. L. Muller), Springer Verlag, Vienna(1974).
    18.McDonald, M. G. and A. W. Harbaugh,“A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model“,U.S. Geological Survey, Virginia(1988).
    19.Mohamed El Tani, “Circular tunnel in a semi-infinite aquifer”. Tunnelling and Underground Space Technology, Vol.18,pp 49-55(2003).
    20.Nathan,R.J., and McMahon, T.A., “Evaluation of automated techniques for base flow and recession analysis”. Water Resources Research, Vol.26, No.7, pp.1465-1473(1990).
    21.Rutledge, A.T., “Method of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces, in Hotchkiss, W.R. and Johnson, A.J., eds., Regi0nal aquifer systems of the United States, aquifers of the southern and eastern states. American Water Resources Association Monograph Series, No.17, pp.59-73(1992).
    22.Schwartz, F. W., and H. Zhang, Fundamentals of ground water, John Wiley & Sons, Inc(2002).
    23.Shimojima, E., T. Tanaka, R. Yoshioka, and Y. Hoso, “Seepage into a mountain tunnel and rain infiltration”, Journal of Hydrology, Vol.147, pp.121-151(1993).
    24.Snow, D. T., “The frequency and apertures of fractures in rock”, International Journal of Rock Mechanics and Mining Sciences, Vol.7, pp.23-40(1970).
    25.Snow, D.T., “Anisotropic permeability of fractured media, Water Resources Research”, Vol.5, No.6, pp.1273-1289(1969).
    26.Szilagyi, J., F. E. Harvey, and J. F. Ayers, “Regional estimation of base recharge to ground water using water balance and a base-flow index”, Ground Water, Vol.41, No.4, pp.504-513(2003).
    27.Tal, A., and G. Dagan, “Flow toward storage .tunnels beneath a water table 1. two-dimensional flow”, Water Resources Research, Vol.19, No.1, pp.241-249(1983).
    28.Zhang, L., and J. A. Franklin, “Prediction of water flow into rock tunnels: and analytical solution assuming an hydraulic conductivity gradient“, International Journal of Rock Mechanics and Mining Sciences Geomechanics Abstracts, Vol.30, No.1, pp.37-46(1993).
    29.丁澈士、蘇惠珍,「PMWIN 三維地下水模式」,五南圖書出版公司,台北(2004)。
    30.交通部台灣區國道新建工程局,「北宜高速公路施工階段雪山隧道湧水問題評估調查服務工作第三期評估調查報告」,中興工程顧問股份有限公司(2000)。
    31.交通部台灣區國道新建工程局,「國道南港宜蘭快速公路工程路線評選階段雪山隧道段地質調查工作」,財團法人中興工程顧問社 (1990)。
    32.李振誥、李宏徹、黃崇琅、林碧山,「岩體隧道滲流量之預測:以坪林隧道為例」,中國土木水利工程學刊,第十卷,第四期,第595-604頁(1998)。
    33.李振誥、陳尉平、李如晃,「應用基流資料估計法推估台灣地下水補注量」,台灣水利季刊,第五十卷,第一期,第69-80頁(2002)。
    34.黃金山、陳伸賢、劉萬里、曾鈞敏、林文勝,「雪山隧道開挖工程之隧道湧水現象對水資源利用之啟示」,土木水利期刊,第三十卷,第四期,第44-50頁(2003)。
    35.侯泰亨,「隧道通過斷層帶地下水滲流分析」,碩士論文,國立成功大學水利及海洋工程學系,台南(1998)。
    36.陳進發,「未飽和層土壤水平衡模式解析及其應用之研究」。博士論文,國立成功大學資源工程學系,台南(2002)。
    37.陳尉平,「由河川流量資料與流量歷線推估地下水補注量」,碩士論文,國立成功大學資源工程學系,台南(1999)。
    38.陳明君,「頭城地區四稜砂岩水文地質及隧道湧水之研究」,碩士論文,國立台灣大學地質所,台北(1997)。
    39.陳昭旭、李振誥,「隧道湧水災害之水文地質調查及防治處理措施」,地工技術,第八十七期,第81-92頁(2001)。
    40.陳順宇、鄧碧娥,「統計學」,華泰書局,台北,第14-1~15-19(1998)。
    41.張龍均,「山岳隧道湧水處理之研究」,碩士論文,國立中央大學土木工程學系,中壢(2001)。
    42.楊豐榮、龔文瑞、李振誥、林宏奕,「曾文水庫越域引水隧道工程湧水評估」,中國礦冶工程學會會刊,第四十八卷,第四期,第29~41頁(2004)。
    43.曾琮愷,「隧道開挖滲流現象之模擬」,碩士論文,私立中原大學土木工程學系,中壢(2002)。
    44.蔣序元,「新永春隧道之湧水分析」,碩士論文,國立台灣大學土木工程學系,台北(2002)。
    45.潘文健,「屏東平原合適出水量分析之研究」,碩士論文,國立成功大學資源工程學系,台南(2002)。
    46.譚景全,「全段面隧道鑽掘機(TBM)工法之案例研究」,碩士論文,國立成功大學資源工程學系,台南(1989)。

    下載圖示 校內:立即公開
    校外:2005-08-30公開
    QR CODE