簡易檢索 / 詳目顯示

研究生: 張舜淵
Chang, Shun-Yuan
論文名稱: 高攻角戰機之非線性動態反算控制律設計
Design of Nonlinear Dynamic Inverse Control Law for High Angle of Attack Aircraft
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 191
中文關鍵詞: 高攻角非線性動態反算向量噴嘴推力向量控制配置
外文關鍵詞: High Angle of Attack, Nonlinear Dynamic Inverse, Vector Nozzle, Thrust Vector Control, Control Allocation
相關次數: 點閱:84下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的是討論非線性動態反算(Nonlinear Dynamic Inverse, NDI)於高攻角飛行控制的應用,主要工作為高攻角和飛行控制律的設計,因此需要處理大範圍的操作點。當戰機進入高攻角時,由於氣流的分離,主要氣動力操作面的性能都急遽下降,因此翼面的控制力會大幅降低,造成飛行器的操縱性能下降。針對後失速的特點,本論文建立了多軸向量噴嘴,推力可進行上下與左右偏轉,並結合氣動力及向量推力進行控制。非線性動態反算為控制系統設計者提供了直接的方法,推導非線性系統的控制律,將非線性系統轉成等義的線性系統,並利用此方式進行角速度迴路與姿態迴路之控制器設計。本論文增加了向量噴嘴控制面,並採用控制配置來分配氣動力與向量噴嘴控制面的選擇。最後驗證不同的飛行操作模式,其結果皆顯示,透過NDI控制可以證明在大範圍攻角飛行下仍具有良好的控制能力。

    The purpose of this thesis is to discuss the application of Nonlinear Dynamic Inverse (NDI) in high-angle flight control. The main work is around high angle of attack (A.O.A) and the design of flight control law, so it is necessary to deal with a wide range of operating points. When entering a A.O.A, the performance of the control surfaces is drastically reduced due to the separation of the airflow, so the control of the airfoil is greatly reduced, resulting in a decrease in the maneuverability of the aircraft. The NDI provides a direct method for the control system designers to derive the control law of the nonlinear system, convert the nonlinear system into an equivalent linear system, and use this method to design the controller of the angular velocity loop and the attitude loop. This thesis adds the thrust vectoring and uses a control allocation to assign the choice of aerodynamic and vector nozzle control surfaces. Finally, different flight operation modes are verified. The results show that the NDI control can prove that it has good control ability under a wide range of angles of attack.

    摘要------I Design of Nonlinear Dynamic Inverse Control Law for High Angle of Attack Aircraft------II 致謝------VII 目錄------VIII 表目錄------X 圖目錄------XII 符號表------XVII 第1章 緒論------1 1.1 背景及文獻回顧------1 1.2 研究動機------4 1.3 文章架構------4 第2章 飛行運動方程式------7 2.1 飛行器座標------7 2.2 飛行器的剛體運動方程式------12 2.3 尤拉角與四元數法------17 第3章 高攻角飛行及向量噴嘴------20 3.1 後失速狀態的飛行力學------20 3.2 向量噴嘴種類------23 3.3 向量噴嘴自由度:二維與三維------28 3.4 向量推力及推力力矩------31 第4章 線性化飛行動力學------33 4.1 飛行運動的線性化與氣動力係數------33 4.2 飛行器空氣動力學------34 4.3 致動器與飛行器幾何參數------42 4.4 配平分析------44 第5章 非線性動態反算控制器設計------51 5.1 開迴路響應分析------51 5.2 飛行控制設計方法------52 5.3 非線性動態反算控制律設計------58 5.4 角速度控制(Angular Rate Control)------61 5.5 姿態控制(Attitude Control)------65 5.6 向量噴嘴角速度控制------68 5.7 控制配置(Control Allocation)------69 第6章 六自由度模擬與結果------72 6.1 無向量噴嘴之角速度控制飛行模擬------72 6.2 向量噴嘴之角速度模擬------83 6.3 姿態控制飛行模擬------99 6.4 高攻角模式------107 第7章 總結------130 7.1 結果與討論------130 7.2 未來研究方向------131 參考文獻------132 附錄 A------136 附錄 B------141 附錄 C------142 附錄 D------145

    [1]Herrick, P. W, Propulsion Influences on Air Combat. AIAA-85-1457, July 1985.
    [2]Costes, Philippe, Investigation of Thrust Vectoring and Post-stall Capability in Air Combat, AIAA-88-4160, Aug. 1988.
    [3]Nguyen, Luat T. and Gilbert, William P, Impact of Emerging Technologies on Future Combat Aircraft Agility, AIAA-90- 1304, May 1990.
    [4]Day, R.E., Coupling Dynamic in Aircraft: a historical perspective, NASA Special Publication, 532, 1997.
    [5]Pahle, Joseph W., Foster, John V., Bundick, W.T., and Wichman, Keith D., An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle, High Angle-of-Attack Technology Conference, Hampton, Virginia, Sept. 1996.
    [6]Nguyen, L.T., Ogburn, M.E., Gillert, W.P., Kibler, K.S., Brown, P.W., and Deal, P.L., Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane with Relaxed Longitudinal Static Stability, NASA Technical Paper 1538, 1979.
    [7]Ikaza, D., Thrust Vectoring Nozzle for Military Aircraft Engines, Industria de Turbo Propulsores, SA, 2000.
    [8]Capone, Francis J., Mason, Mary L. and Leavitt, Laurence D, An Experimental Investigation of Thrust Vectoring Two-Dimensional Convergent-Divergent Nozzles Installed in a Twin-Engine Fighter Model at High Angles of Attack. NASA TM-4155, 1990.
    [9]W. B. Herbst, Future Fighter Technologies, Journal of Aircraft, vol. 17, no. 8, pp. 561-566, 1980.
    [10]Bowers, Albion H. and Joseph W. Pahle, Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle, NASA TM-4771, Nov. 1996.
    [11]Huber, Peter, and Patricia Seamount. X-31 high angle of attack control system performance, 1994.
    [12]Canter, Dave, X-31 Post-Stall Envelope Expansion and Tactical Utility Testing, Fourth NASA High Alpha Conference, NASA CP- 10143, July 1994.
    [13]Asbury, Scott C., and Capone, Francis J., Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack from 0° to 70°, NASA TP-3531, December 1995.
    [14]H. Chen, Effectiveness of Thrust Vectoring Control for Longitudinal Trim of a Blended Wing Body Aircraft, Delft University of Technology, 2015.
    [15]Brinker, J., and Wise, K., Flight Testing of a Reconfigurable Flight Control Law on the X-36 Tailless Fighter Aircraft, Journal of Guidance, Control, and Dynamics, Vol. 24, No. 5, 2001, pp. 903–909.
    [16]Durham, W., Bordignon, K. A., and Beck, R., Aircraft control allocation, John Wiley & Sons, 2017.
    [17]T. A. Johansen, T. I. Fossen, Control allocation: A survey, Automatica, vol. 49, no. 5, pp. 1087-1103, 2013.
    [18]G.J. Balas, Flight control law design: An industry perspective. European Jnl. of Ctrl., 9(2-3):207-226, 2003.
    [19]R. J. Adams, S. S. Banda, Robust flight control design using dynamic inversion and structured singular value synthesis, IEEE Trans. Circuits Syst., vol. 1, no. 2, pp. 80-92, June 1993.
    [20]D. Enns, D. Bugajski, R. Hendrick, G. Stein, Dynamic inversion: An evolving methodology for flight control design, Int. J. Control, vol. 59, no. 1, pp. 71-91, Jan. 1994.
    [21]Slotine, J.-J. E. & Li, W., Applied Nonlinear Control (3rd ed.), Prentice-Hall, 1991.
    [22]K. M. Sobel, E. Y. Shapiro, Eigenstructure Assignment for Design of Multimode Flight Control Systems, IEEE Contr. Syst., vol. 5, no. 2, pp. 9-15, May 1985.
    [23]C. A. Harvey, G. Stein, Quadratic weights for asymptotic regulator properties, IEEE Trans. Automat. Contr., vol. AC-23, pp. 378-387, 1978.
    [24]S. N. Singh, M. Steinberg, A. B. Page, Nonlinear adaptive and sliding mode flight path control of F/A-18 model, IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1250-1262, Oct. 2003.
    [25]R. J. Adams, J. M. Buffington, A. G. Sparks, S. S. Banda, Robust Multivariable Flight Control, U.K., London:Spring-Verlag, 1994.
    [26]J. M. Buffington, A. G. Sparks, S. S. Banda, Robust longitudinal axis flight control for an aircraft with thrust vectoring, Automatica, vol. 30, no. 10, pp. 1527-1540, 1994.
    [27]W. Morse, K. Ossman, Flight Control Reconfiguration Using Model Reference Adaptive Control, Proc. 1989 ACC, 1989.
    [28]D. Enns, D. Bugajski, R. Hendrick, G. Stein, "Dynamic inversion: An evolving methodology for flight control design", Int. J. Contr., vol. 59, no. 1, pp. 71-91, 1994.
    [29]S. A. Snell, D. F. Enns, W. L. Garrard, Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft, AIAA J. of Guidance Control and Dynamics, vol. 15, no. 4, pp. 976-984, 1992.
    [30]Ciann-Dong Yang, Chi-Chung Luo, Shiu-Jeng and Yeong-Hwa Chang, Applications of Genetic-Taguchi Algorithm in Flight, Journal of Aerospace Engineering, October 2005.
    [31]Ciann-Dong Yang and Chien-Chung Kung, Nonlinear H_∞ Flight Control of General Six-Degree-of-Freedom Motions, Journal of Guidance Control and Dynamics, Vol. 23, No. 2, pp. 278-288, 2000.
    [32]Po-Wei Chang, Ciann-Dong Yang, Chien-Chung Kung and Pang-Chia Chen, Flight Control Design for Helicopter Landing on Moving Ship, Journal of Aeronautics, Astronautics and Aviation, Series A, Vol.40, No.3, pp.127 - 136, 2008.
    [33]R. P. G. Collinson, Introduction to Avionics Systems, 2nd ed, SpringerLink, pp. 159-224, 2003.
    [34]C. J. Miller, "Nonlinear dynamic inversion baseline control law: Flight-test results for the full-scale advanced systems testbed F/A-18 airplane", AIAA Paper no. 2011-6468, AIAA Guidance, Navigaion, and Control Conference, Portland Oregon, 2011.
    [35]Miller, C., Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions, AIAA Guidance, Navigation, and Control Conference, Portland, 2011.
    [36]ALBOSTAN, Onur, and Metin GÖKAŞAN. High Angle of Attack Manoeuvring Control of F-16 Aircraft Based on Nonlinear Dynamic Inversion and Eigenstructure Assignment, European Conference for Aeronautics and Space Sciences, 2017.
    [37]Gary G. Balas, John Hodgkinson, Control design methods for good flying qualities, AIAA Atmospheric Flight Mechanics Conference, Chicago: AIAA, 2009: 1-20.
    [38]Walker, G. P., and Allen, D.A., X-35B STOVL Flight control law design and flying qualities, AIAA 2002-6018, International Powered Lift Conference, 2002.
    [39]Sonneveldt, L., Nonlinear F-16 model description, Delft University of Technology, Netherlands, 2006.
    [40]Stevens, B.L., and Lewis, F.L., Aircraft Control and Simulation, 2nd ed., John Wiley & Sons, Inc., 2003.
    [41]康心奕, 超機動飛行器的四元組非線性動態反算自主飛行控制系統設計與實作, 國立成功大學碩士論文, 2017.
    [42]Erich. Wilson, An Introduction to Thrust-Vectored Aircraft Nozzles, LAP LAMBERT Academic Publishing, 2013.
    [43]Thrust vectoring nozzle on Sukhoi Su-35S, Retrieved June, 2018 from https://en.wikipedia.org/wiki/Sukhoi_Su-35.
    [44]Eurofighter Typhoon aircraft EJ200 Engine, Rolls-Royce Products&Services Retrieved June, 2018 from https://www.rolls-royce.com/products-and-services/defence/aerospace/combat-jets/ej200.aspx#/.
    [45]Dryden Flight Research Center F-18 HARV, NASA photo Retrieved June, 2018 from https://www.dfrc.nasa.gov/Gallery/Photo/F-18HARV/HTML/EC92-10231-2.html.
    [46]Deere, Karen A., Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center, AIAA 2003-3800, 21st Applied Aerodynamics Conference, Orlando, FL, June 23-26, 2003.
    [47]F-22 Raptor Social, Lockheed Martin. Retrieved June, 2018 from https://www.flickr.com/photos/lockheedmartin/5435943483/in/album72157601431933050/.
    [48]Gregg E Pyers, F-35B Lift System Overview, Rolls-Royce Corporation, 2016.
    [49]Marco, A. D., Duke, E. L., and Berndt, J. S., A General Solution to the Aircraft Trim Problem, AIAA Modeling and Simulation Technologies Conference and Exhibit, AIAA Paper 2007-6703, 2007.
    [50]Yang, C.,D., Nonlinear System and Control, Department of Aeronautics and Astronautics, National Cheng Kung University, 2018.
    [51]A. J. Krener, On the equivalence of control systems and the linearization of nonlinear systems, SIAM J. Contr., vol. 11, pp. 670-676, 1973.
    [52]R. W. Brockett, Feedback invariant of nonlinear systems, Proc. VII IFAC World Congress, pp. 1115-1120, 1978.
    [53]Freund, E., Design of Time-Variable Multivariable Systems by Decoupling and by the Inverse, IEEE Transactions of Automatic Control, AC- 16, Vol. 2, 1971.
    [54]S. N. Singh, W. J. Rugh, Decoupling in a class of nonlinear systems by state variable feedback, Trans. ASME, vol. 94, pp. 323-324, 1972.
    [55]Well, K. H., Faber, B., and Berger, E., Optimale taktische Flugmanoever fuer ein kamfflugzeug der 90er Jahre," Interner Bericht A-52-79/6, DFVLR, Germany, Oct. 1979.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE