| 研究生: |
張舜淵 Chang, Shun-Yuan |
|---|---|
| 論文名稱: |
高攻角戰機之非線性動態反算控制律設計 Design of Nonlinear Dynamic Inverse Control Law for High Angle of Attack Aircraft |
| 指導教授: |
楊憲東
Yang, Ciann-Dong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 高攻角 、非線性動態反算 、向量噴嘴 、推力向量 、控制配置 |
| 外文關鍵詞: | High Angle of Attack, Nonlinear Dynamic Inverse, Vector Nozzle, Thrust Vector Control, Control Allocation |
| 相關次數: | 點閱:84 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的是討論非線性動態反算(Nonlinear Dynamic Inverse, NDI)於高攻角飛行控制的應用,主要工作為高攻角和飛行控制律的設計,因此需要處理大範圍的操作點。當戰機進入高攻角時,由於氣流的分離,主要氣動力操作面的性能都急遽下降,因此翼面的控制力會大幅降低,造成飛行器的操縱性能下降。針對後失速的特點,本論文建立了多軸向量噴嘴,推力可進行上下與左右偏轉,並結合氣動力及向量推力進行控制。非線性動態反算為控制系統設計者提供了直接的方法,推導非線性系統的控制律,將非線性系統轉成等義的線性系統,並利用此方式進行角速度迴路與姿態迴路之控制器設計。本論文增加了向量噴嘴控制面,並採用控制配置來分配氣動力與向量噴嘴控制面的選擇。最後驗證不同的飛行操作模式,其結果皆顯示,透過NDI控制可以證明在大範圍攻角飛行下仍具有良好的控制能力。
The purpose of this thesis is to discuss the application of Nonlinear Dynamic Inverse (NDI) in high-angle flight control. The main work is around high angle of attack (A.O.A) and the design of flight control law, so it is necessary to deal with a wide range of operating points. When entering a A.O.A, the performance of the control surfaces is drastically reduced due to the separation of the airflow, so the control of the airfoil is greatly reduced, resulting in a decrease in the maneuverability of the aircraft. The NDI provides a direct method for the control system designers to derive the control law of the nonlinear system, convert the nonlinear system into an equivalent linear system, and use this method to design the controller of the angular velocity loop and the attitude loop. This thesis adds the thrust vectoring and uses a control allocation to assign the choice of aerodynamic and vector nozzle control surfaces. Finally, different flight operation modes are verified. The results show that the NDI control can prove that it has good control ability under a wide range of angles of attack.
[1]Herrick, P. W, Propulsion Influences on Air Combat. AIAA-85-1457, July 1985.
[2]Costes, Philippe, Investigation of Thrust Vectoring and Post-stall Capability in Air Combat, AIAA-88-4160, Aug. 1988.
[3]Nguyen, Luat T. and Gilbert, William P, Impact of Emerging Technologies on Future Combat Aircraft Agility, AIAA-90- 1304, May 1990.
[4]Day, R.E., Coupling Dynamic in Aircraft: a historical perspective, NASA Special Publication, 532, 1997.
[5]Pahle, Joseph W., Foster, John V., Bundick, W.T., and Wichman, Keith D., An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle, High Angle-of-Attack Technology Conference, Hampton, Virginia, Sept. 1996.
[6]Nguyen, L.T., Ogburn, M.E., Gillert, W.P., Kibler, K.S., Brown, P.W., and Deal, P.L., Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane with Relaxed Longitudinal Static Stability, NASA Technical Paper 1538, 1979.
[7]Ikaza, D., Thrust Vectoring Nozzle for Military Aircraft Engines, Industria de Turbo Propulsores, SA, 2000.
[8]Capone, Francis J., Mason, Mary L. and Leavitt, Laurence D, An Experimental Investigation of Thrust Vectoring Two-Dimensional Convergent-Divergent Nozzles Installed in a Twin-Engine Fighter Model at High Angles of Attack. NASA TM-4155, 1990.
[9]W. B. Herbst, Future Fighter Technologies, Journal of Aircraft, vol. 17, no. 8, pp. 561-566, 1980.
[10]Bowers, Albion H. and Joseph W. Pahle, Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle, NASA TM-4771, Nov. 1996.
[11]Huber, Peter, and Patricia Seamount. X-31 high angle of attack control system performance, 1994.
[12]Canter, Dave, X-31 Post-Stall Envelope Expansion and Tactical Utility Testing, Fourth NASA High Alpha Conference, NASA CP- 10143, July 1994.
[13]Asbury, Scott C., and Capone, Francis J., Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack from 0° to 70°, NASA TP-3531, December 1995.
[14]H. Chen, Effectiveness of Thrust Vectoring Control for Longitudinal Trim of a Blended Wing Body Aircraft, Delft University of Technology, 2015.
[15]Brinker, J., and Wise, K., Flight Testing of a Reconfigurable Flight Control Law on the X-36 Tailless Fighter Aircraft, Journal of Guidance, Control, and Dynamics, Vol. 24, No. 5, 2001, pp. 903–909.
[16]Durham, W., Bordignon, K. A., and Beck, R., Aircraft control allocation, John Wiley & Sons, 2017.
[17]T. A. Johansen, T. I. Fossen, Control allocation: A survey, Automatica, vol. 49, no. 5, pp. 1087-1103, 2013.
[18]G.J. Balas, Flight control law design: An industry perspective. European Jnl. of Ctrl., 9(2-3):207-226, 2003.
[19]R. J. Adams, S. S. Banda, Robust flight control design using dynamic inversion and structured singular value synthesis, IEEE Trans. Circuits Syst., vol. 1, no. 2, pp. 80-92, June 1993.
[20]D. Enns, D. Bugajski, R. Hendrick, G. Stein, Dynamic inversion: An evolving methodology for flight control design, Int. J. Control, vol. 59, no. 1, pp. 71-91, Jan. 1994.
[21]Slotine, J.-J. E. & Li, W., Applied Nonlinear Control (3rd ed.), Prentice-Hall, 1991.
[22]K. M. Sobel, E. Y. Shapiro, Eigenstructure Assignment for Design of Multimode Flight Control Systems, IEEE Contr. Syst., vol. 5, no. 2, pp. 9-15, May 1985.
[23]C. A. Harvey, G. Stein, Quadratic weights for asymptotic regulator properties, IEEE Trans. Automat. Contr., vol. AC-23, pp. 378-387, 1978.
[24]S. N. Singh, M. Steinberg, A. B. Page, Nonlinear adaptive and sliding mode flight path control of F/A-18 model, IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1250-1262, Oct. 2003.
[25]R. J. Adams, J. M. Buffington, A. G. Sparks, S. S. Banda, Robust Multivariable Flight Control, U.K., London:Spring-Verlag, 1994.
[26]J. M. Buffington, A. G. Sparks, S. S. Banda, Robust longitudinal axis flight control for an aircraft with thrust vectoring, Automatica, vol. 30, no. 10, pp. 1527-1540, 1994.
[27]W. Morse, K. Ossman, Flight Control Reconfiguration Using Model Reference Adaptive Control, Proc. 1989 ACC, 1989.
[28]D. Enns, D. Bugajski, R. Hendrick, G. Stein, "Dynamic inversion: An evolving methodology for flight control design", Int. J. Contr., vol. 59, no. 1, pp. 71-91, 1994.
[29]S. A. Snell, D. F. Enns, W. L. Garrard, Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft, AIAA J. of Guidance Control and Dynamics, vol. 15, no. 4, pp. 976-984, 1992.
[30]Ciann-Dong Yang, Chi-Chung Luo, Shiu-Jeng and Yeong-Hwa Chang, Applications of Genetic-Taguchi Algorithm in Flight, Journal of Aerospace Engineering, October 2005.
[31]Ciann-Dong Yang and Chien-Chung Kung, Nonlinear H_∞ Flight Control of General Six-Degree-of-Freedom Motions, Journal of Guidance Control and Dynamics, Vol. 23, No. 2, pp. 278-288, 2000.
[32]Po-Wei Chang, Ciann-Dong Yang, Chien-Chung Kung and Pang-Chia Chen, Flight Control Design for Helicopter Landing on Moving Ship, Journal of Aeronautics, Astronautics and Aviation, Series A, Vol.40, No.3, pp.127 - 136, 2008.
[33]R. P. G. Collinson, Introduction to Avionics Systems, 2nd ed, SpringerLink, pp. 159-224, 2003.
[34]C. J. Miller, "Nonlinear dynamic inversion baseline control law: Flight-test results for the full-scale advanced systems testbed F/A-18 airplane", AIAA Paper no. 2011-6468, AIAA Guidance, Navigaion, and Control Conference, Portland Oregon, 2011.
[35]Miller, C., Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions, AIAA Guidance, Navigation, and Control Conference, Portland, 2011.
[36]ALBOSTAN, Onur, and Metin GÖKAŞAN. High Angle of Attack Manoeuvring Control of F-16 Aircraft Based on Nonlinear Dynamic Inversion and Eigenstructure Assignment, European Conference for Aeronautics and Space Sciences, 2017.
[37]Gary G. Balas, John Hodgkinson, Control design methods for good flying qualities, AIAA Atmospheric Flight Mechanics Conference, Chicago: AIAA, 2009: 1-20.
[38]Walker, G. P., and Allen, D.A., X-35B STOVL Flight control law design and flying qualities, AIAA 2002-6018, International Powered Lift Conference, 2002.
[39]Sonneveldt, L., Nonlinear F-16 model description, Delft University of Technology, Netherlands, 2006.
[40]Stevens, B.L., and Lewis, F.L., Aircraft Control and Simulation, 2nd ed., John Wiley & Sons, Inc., 2003.
[41]康心奕, 超機動飛行器的四元組非線性動態反算自主飛行控制系統設計與實作, 國立成功大學碩士論文, 2017.
[42]Erich. Wilson, An Introduction to Thrust-Vectored Aircraft Nozzles, LAP LAMBERT Academic Publishing, 2013.
[43]Thrust vectoring nozzle on Sukhoi Su-35S, Retrieved June, 2018 from https://en.wikipedia.org/wiki/Sukhoi_Su-35.
[44]Eurofighter Typhoon aircraft EJ200 Engine, Rolls-Royce Products&Services Retrieved June, 2018 from https://www.rolls-royce.com/products-and-services/defence/aerospace/combat-jets/ej200.aspx#/.
[45]Dryden Flight Research Center F-18 HARV, NASA photo Retrieved June, 2018 from https://www.dfrc.nasa.gov/Gallery/Photo/F-18HARV/HTML/EC92-10231-2.html.
[46]Deere, Karen A., Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center, AIAA 2003-3800, 21st Applied Aerodynamics Conference, Orlando, FL, June 23-26, 2003.
[47]F-22 Raptor Social, Lockheed Martin. Retrieved June, 2018 from https://www.flickr.com/photos/lockheedmartin/5435943483/in/album72157601431933050/.
[48]Gregg E Pyers, F-35B Lift System Overview, Rolls-Royce Corporation, 2016.
[49]Marco, A. D., Duke, E. L., and Berndt, J. S., A General Solution to the Aircraft Trim Problem, AIAA Modeling and Simulation Technologies Conference and Exhibit, AIAA Paper 2007-6703, 2007.
[50]Yang, C.,D., Nonlinear System and Control, Department of Aeronautics and Astronautics, National Cheng Kung University, 2018.
[51]A. J. Krener, On the equivalence of control systems and the linearization of nonlinear systems, SIAM J. Contr., vol. 11, pp. 670-676, 1973.
[52]R. W. Brockett, Feedback invariant of nonlinear systems, Proc. VII IFAC World Congress, pp. 1115-1120, 1978.
[53]Freund, E., Design of Time-Variable Multivariable Systems by Decoupling and by the Inverse, IEEE Transactions of Automatic Control, AC- 16, Vol. 2, 1971.
[54]S. N. Singh, W. J. Rugh, Decoupling in a class of nonlinear systems by state variable feedback, Trans. ASME, vol. 94, pp. 323-324, 1972.
[55]Well, K. H., Faber, B., and Berger, E., Optimale taktische Flugmanoever fuer ein kamfflugzeug der 90er Jahre," Interner Bericht A-52-79/6, DFVLR, Germany, Oct. 1979.