| 研究生: |
陳佩雯 Widjajanti, Wentalia |
|---|---|
| 論文名稱: |
Al2O3及SiO2阻絕層效應對量子點敏化太陽電池效能的研究 Effect of Al2O3 and SiO2 as insulating layers on the performance of QD-Sensitized Solar Cells |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 外文關鍵詞: | Dye-sensitized solar cells, Cadmium Sulfide, Cadmium selenide, Quantum Dots, Chemical Bath Deposition, Insulating layers, Alumina Oxide |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this study, cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dots (QDs) were used as sensitizers of dye-sensitized solar cells (DSSCs). This two QDs were sequentially assembled onto a nanocrystalline TiO2 film, using a chemical bath deposition (CBD) method, to prepare a CdS/CdSe co-sensitized photoelectrode for QDs-sensitized solar cell application. Al2O3 and SiO2 were used as insulating layersto enhance the performance of QDs-DSSCs are studied. The results showed that CdS and CdSe QDs have complementary effect in the light harvest, but the performance of a QDs co-sensitized solar cell is strongly dependent on the order of CdS and CdSe respected to the TiO2. In the cascade structure of TiO2/CdS/CdSe electrode, the presence of Al2O3 and SiO2 insulating layer between CdS and CdSe can increase the performance of the QD-DSSCs. It is found that more QD can be incorporated onto the TiO2 thin films due to the surface treatment of Al2O3 and SiO2, which is advantageous to increase the light harvest range of the cell. Futhermore, the presence of Al2O3 and SiO2 can also inhibit the recombination of injected electrons to the electrolyte. It is also found that appropriate heat treatment (300oC,2 minutes) to the TiO2/CdS before assembly of CdSe can improve the performance and stability of the photoelectrode. The best energy conversion of the QD-DSSCs achieved in this study is 3.27%, obtained for the ITO/TiO2/CdS(4)/300oC/CdSe(5) electrode. By introducing of Al2O3 layer between CdS and CdSe, the efficiency can be increased to 3.4%.
1. Chia-Yuan Chen, Mingkui Wang, Michael Gra tzel, ”Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells” ACS. Vol 3 , No. 10 , 3103 (2009)
2. M. Grätzel, “Solar Energy Conversion by Dye-sensitized Photovoltaic Cells” Inorg. Chem. 44, 6841, (2005)
3. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835 (2005)
4. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
5. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)
6. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)
7. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte” Chem. Commun., 2972 (2002)
8. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator” Chem. Commun., 374 (2002)
9. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “ An efficient organogelator for ionic liquids to prepare stable quasi-solidstate dye-sensitized solar cells” J. Mater. Chem. 16, 2978 (2006)
10. B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737 (1991)
11. A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics” Acc. Chem. Res 33, 269 (2000)
12. A. F. Nogueira and M. D. Paoli, “A day sensitized TiO2 photovoltatic cell constructed with an elastomeric electrolyte” Solar Energy Mater. Solar Cells 61, 135 (2000)
13. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine” J. Phys. Chem. B 105, 12809 (2001)
14. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, “Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells” Nano Lett. 2, 1259 (2002)
15. P. Malik, M. Castro and C. Carrot, “Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications” Polym. Degrad. Stabil. 91, 634 (2006)
16. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,T. Sekiguchi and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte” Nature Mater. 2, 402 (2003)
17. P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells” Journal of Fluorine Chem. 125, 1241 (2004)
18. P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell” J. Am. Chem. Soc. 126, 13590 (2004)
19. Lubomir Spanhel, Markus Haase, Horst Weller, and Arnim Henglein, “Surface Modification and Stability of Strong Luminescing CdS Particles” J.Am.Chem.Soc 109,5649 (1987)
20. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties” J. Phys. Chem. 95, 525 (1991).
21. W. W. Yu, L. Qu, W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854 (2003).
22. W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers” Angew. Chem. Int. Ed. 41, 2368 (2002).
23. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion” Inorg. Chem. 44, 6893 (2005)
24. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510 (1961)
25. A. J. Nozik, “Quantum dot solar cells” Physica E 14, 115 (2002)
26. I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462 (2005)
27. S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192 (2001)
28. M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710 (1998)
29. P. O’Brien, J. McAleese, “Developing an Understanding of the Processes Controlling the Chemical Bath Deposition of ZnS and CdS” J. Mater. Chem. 8, 2309 (1998)
30. J. L. Blackburn, D. C. Selmarten, A. J. Nozik,“Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
31. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Trough the Metal-Insulator Transition” Science 277, 1978 (1997)
32. Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, “Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation” J. Phys. Chem. B 101, 9703 (1997)
33. A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, “Electronic Properties of Hybrid Organic/Inorganic Langmuir-Blodgett Films Containing CdS Quantum Particles” J. Phys. Chem. B 106, 9070 (2002)
34. A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R. Naaman, “Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organic-Inorganic Films” J. Phys. Chem. B 107, 4245 (2003)
35. P. Jiang, Z. F. Liu, S. M. Cai, “Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate” Langmuir 18, 4495 (2002)
36. M. Sastry, M. Rao, K. N. Ganesh, “Electrostatic Assembly of Nanoparticles and Biomarcromolecules” Acc. Chem. Res. 35, 847, 2002
37. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416 (2004)
38. L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation” Adv. Mater. 14, 1323 (2002)
39. L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes” Angew. Chem. Int. Ed. 44, 78 (2005)
40. M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z. Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am. Chem. Soc. 122, 11480 (2000)
41. S. Abd-Lefdil, C. Messaoudi, M. Abd-Lefdil and D. Sayah, “Temperature Growth and Annealing Effects on CdS Thin Films Prepared by Chemical Bath Deposition Process” Phys.Stat. Sol. (a) 168, 417 (1998)
42. R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors” J. Phys. Chem. 98, 3183 (1994)
43. P. Hoyer and R. Könenkamp, “Photoconduction in porous TiO2 sensitized by PbS quantum dots” Appl. Phys. Lett. 66, 349 (1995)
44. R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
45. J. L. Blackburn, D. C. Selmarten and A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
46. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, “Quantum Dot-Sensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of Self-Assembly Monolayer and Chemical Bath Deposition” Appl. Phys. Lett. 90, 143517 (2007)
47. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells” Solar Energy Mater. Solar Cells 70, 85 (2001)
48. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of Nanocrystalline TiO2 by Self-Assembled Layers of CdS Quantum Dots” Chem. Commun., 1030 (2002)
49. K.G. U. Wijayanthaa, L. M. Petera and L.C. Otley, “Fabrication of CdS Quantum Dot Sensitized Solar Cells via a Pressing Route,” Solar Energy Materials & Solar Cells 83, 363 (2004)
50. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
51. Q. Shen and T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” Japanese Journal of Applied Physics 43, 2946 (2004)
52. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153 (1998)
53. J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Mićić and A. J. Nozik, “Electron and Hole Transfer from Indium Phosphide Quantum Dots” J. Phys. Chem. B 109, 2625 (2005)
54. P. Hoyer and R. Könenkamp, “Photoconduction in porous TiO2 sensitized
by PbS quantum dots” Appl. Phys. Lett. 66, 349 (1995)
55. R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
56. R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion” Phys. Rev. Lett. 92, 186601 (2004)
57. T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A.Fujimoto, T. Hirakawa and S. Fukuzumi, “Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles” J. Am. Chem. Soc. 127, 1216 (2005)
58. K. George and P. V. Kamat, “Chromophore-Functionalized Nanoparticles”
Acc. Chem. Res. 36, 888 (2003)
59. Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles,” J. Am. Chem. Soc. 127, 7632 (2005)
60. R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors” J. Phys. Chem. 98, 3183 (1994)
61. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L.Levina and E. H. Sargrnt, “Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics” Nature Materials 4, 138 (2005)
62. C. H. Chang, Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells” Applied Phyisics Letters 91, 053503 (2007)
63. S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, “Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 124, 11215 (2002)
64. S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott and C. A. Bignozzi, “Efficient Non-Corrosive Electron-Transfer Mediator Mixtures for Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 128, 9996 (2006)
65. T. Nakanishi, B. Ohtani and K. Uosakin, “Effect of Immobilized Electron
Relay on the Interfacial Photoinduced Electron Transfer at a Layered Inorganic–Organic Composite Film on Gold” Journal of Electroanalytical
Chemistry 455, 229 (1998)
66. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer and I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416 (2004)
67. Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D. R. Klug and J. R. Durrant, “Modulation of the Rate of Electron Injection in Dye-Sensitized
Nanocrystalline TiO2 Films by Externally Applied Bias” J. Phys. Chem. B
105, 7424 (2001)
68. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen and G. Hodes, “Chemical Bath Deposited CdS/CdSe-Sensitized Porous TiO2 Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry 181, 306 (2006)
69. M. Grätzel, “Photoelectrochemical Cells” Nature 414, 338 (2001)
70. N. C. Greenham, X. Peng and A. P. Alivisatos, “Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites studied by Photoluminescence Quenching and Photoconductivity” Phys. Rev. B 54, 628 (1996)
71. W. U. Huynh, X. Peng, and A. P. Alivisatos, “CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices” Adv. Mater. 11, 923 (1999)
72. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida, “Improved Solid-State Dye Solar Cells with Polypyrrole Using a Carbon-Based Counter Electrode” Chemistry Letters, 1054 (2001)
73. D. J. Milliron, I. Gur and A. P. Alivisatos, “Hybrid Organic–Nanocrystal Solar Cells” Mrs Bulletin30, 41 (2005)
74. B. O’Regana, “Efficient Dye-Sensitized Charge Separation in Wide-Band-Gap p-n Heterojunction” J. Appl. Phys. 80, 4749 (1996)
75. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha and V. P. S. Perera, “A Solid-State Photovoltaic Cell Sensitized with a Ruthenium Bipyridyl Complex” J. Phys. D: Appl. Phys. 31, 1492 (1998)
76. B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Grätzel, “Electrodeposited Nanocomposite n-p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics” Adv. Mater. 12, 1263 (2000)
77. G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R. A. De Silva and K. Tennakone, “Dye-Sensitized Solar Cell with the Hole Collector p-CuSCN Deposited from a Solution in n-Propyl Sulphide” Solar Energy Materials & Solar Cells 69, 195 (2001)
78. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A Solid-State Dye Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater. 14, 5023 (2002)
79. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A Solid-State Dye Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater. 14, 5023 (2002)
80. R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, V. Muňoz-Sanjosé, “ZnO/CdTe/CuSCN, a Promising Heterostructure to Act as Inorganic Eta-Solar Cell” Thin Solid Films 483, 372 (2005)
81. B. C. O’Regan and F. Lenzmann, “Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells” J. Phys. Chem. B 108, 4342 (2004)
82. St. Kutzmutz, G. Láng and K. E. Heusler, “The Electrodeposition of CdSe from Alkaline Electrolytes” Electrochimica Acta 47, 955 (2001)
83. C. L. Clément, R. T. Zaera, M. A. Ryan, A. Katty and G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunction” Adv. Mater. 17, 1512 (2005)
84. I. Gur, N. A. Fromer, M. L Geier and A. P. Alivisatos1, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution,” Science 310, 462 (2005)
85. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides” J.Mater. Chem. 12, 1459 (2002)
86. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” J. Coll. Interf. Sci. 252, 77 (2002)
87. R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochim. Acta 50, 2453 (2005)
88. Y. L. Lee and C. H. Chang, “Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells” J. Power Sources 185, 584 (2008)
89. Fen Luo Liduo, Wang Beibei Ma, and Yong Qiu, ”Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells” Journal of Photochemistry and Photobiology Vol 197, Issues 2-3, ( 2008)
90. D. Yogi Goswami and Yuwen Zhao “Alumina post-modification after dye-sensitization: effect on the performance of quasi-solid state solar cells” Solar energy 1264-1268, (2009)
91. Jian Hua Zhu, Yuan Chun, Qin-hua Xu, Yu Qin, ”Novel porous material derived from hydrolysis of aluminum isopropoxide on NaY zeolite” Materials Letters Volume 33, Issues 5-6, Pages 331-335(1998)
92. Hikmat S. Hilal, Rania M.A. Ismail, Amer El-Hamouz, Ahed Zyoud and Iyad Saadeddin, ”Effect of cooling rate of pre-annealed CdS thin film electrodes prepared by chemical bath deposition: Enhancement of photoelectrochemical characteristics” Vol 54, Issues 12 (2009)
93. Yuh-Lang Lee, Bau-Ming Huang, and Huei-Ting Chien “Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications” Chem. Mater.20 (22), pp 6903–6905(2008)
94. Andrey,R.”Semiconductor Nanocrystal Quantum Dots” Spinger Wien: New York(2008)
95. D.F. Watson, G.J. Meyer, Coord. Chem. Rev. 248 ,1391–1406(2004).
96. E.Palomares, John N.Clifford, James E Durrant”Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers” ACS (2002)