研究生: |
李凱璿 Lee, Kai-Hsuan |
---|---|
論文名稱: |
以覆蓋層與溝槽式電極結構應用於氮化物系列金半金光偵測元件
之製作與研究 Fabrication and Investigation of Nitride-based Metal-Semiconductor-Metal Photodetectors by Using Capping Layer or Recessed Electrodes |
指導教授: |
張守進
Chang, Shoou-Jinn |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 氮化鎵 、氮化銦鎵 、光偵測器 、溝槽式電極 、覆蓋層 |
外文關鍵詞: | recessed electrodes, GaN, photodetector, capping layer, InGaN |
相關次數: | 點閱:113 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究主題在於針對氮化物系列金半金光偵測器設計新穎的元件結構,以期望改善光偵測元件之特性,包括抑制元件漏電流ヽ增加元件速度ヽ效率與響應特性。本論文係使用有機金屬氣相沉積技術於藍寶石基板上成長氮化物磊晶結構,進而製作氮化物系列金半金光偵測器,並進行元件特性量測與分析。
為了使氮化鎵系列金半金光偵測器達到最佳的元件特性,吾人必須設法抑制因氮化鎵晶體與藍寶石基板間之晶格常數與熱膨脹係數不匹配產生的差排缺陷所導致的漏電流。本論文的第一部分即採用低溫氮化鋁覆蓋層及未活化的鎂摻雜氮化鎵覆蓋層來製作氮化鎵紫外光偵測器以解決此一問題。與傳統無覆蓋層的金半金光偵測器相比,藉由加入此一覆蓋層結構可有效降低暗電流值且增加紫外光對可見光之拒斥比。此可歸因於覆蓋層可以提供較大與較厚的蕭基能障,並對半導體表面能態有鈍化的作用。
此外,元件的操作效率與速度亦關鍵性地決定了光偵測器的優劣。基於此原因,我們設計溝槽式電極結構應用於氮化銦鎵金半金藍光偵測器,藉由此一結構設計,可縮短光載子的漂移時間,亦即可提高元件偵測速度與效率。與傳統無溝槽式電極結構的金半金光偵測器相比,使用溝槽式電極結構能大幅提升元件的光響應與光暗電流比,並能增加光偵測器的響應度與外部量子效率。
The objective of this research is to design the appropriate device structure for nitride-based metal-semiconductor-metal (MSM) photodetectors to improve the device performances, including the suppression of the dark leakage current or the enhancement of speed, efficiency, and photoresponse of the photodetectors. The structure of nitride-based MSM photodetectors were epitaxied on sapphire substrate by metal-organic chemical vapor deposition system (MOCVD). The fabrication and characterization of the MSM photodetectors were also employed in our experiments.
To achieve a GaN-based high performance MSM photodetector, it is critical to reduce the leakage current, which result from the defects in the film. However, the large differences in lattice constant and thermal expansion coefficient between GaN and sapphire inevitably lead to high dislocation defect density in the GaN epitaxial layer. We adopted a low-temperature (LT) grown AlN or an un-activated Mg-doped GaN capping layer onto the GaN active layer to solve this problem. Compared with conventional MSM photodetectors, we effectively suppressed dark leakage current and achieved larger UV to visible rejection ratio from the photodetectors with LT-AlN or an un-activated Mg-doped GaN capping layer. This result could be attributed to the thicker and higher potential barrier and effective surface passivation after inserting LT-AlN or an un-activated Mg-doped GaN capping layer.
On the other hand, the efficiency and speed of the photodetectors are key points to judge the detectors between good and bad. For this reason, we designed the recessed electrodes configuration to reduce the transit time of photogenerated carriers and enhance the efficiency and speed of InGaN-based MSM photodetectors. From device measurement results, it was found that measured photocurrent and photocurrent to dark current contrast ratio were both much larger for the MSM photodetectors with the recessed electrodes. The responsivity and external quantum efficiency of the detector with recessed electrodes were also found to be larger than conventional one.
Chapter1
[1] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “ Superbright green InGaN single-quantum-well-structure light-emitting diodes”, Jpn. J. Appl. Phys., Vol. 34, p. L1332, 1995.
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto,T. Kozaki,H. Umemoto, M. Sano, and K. Chocho, “ Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420 mW”, Jpn. J. Appl. Phys., Vol. 37, p. L627, 1998.
[3] S. Nakamura, M. Senoh, S. Nagahama, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and T. Mukai, “ Violet InGaN/GaN/AlGaN-based laser diodes operable at 50°C with a fundamental transverse mode” Jpn. J. Appl. Phys., Vol. 38, p. L266, 1997.
[4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “ Blue InGaN-based laser diodes with an emission wavelength of 450 nm”, Appl. Phys. Lett., Vol. 76, p. 22, 1999.
[5] O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H. Morkoç, “ High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors” , Appl. Phys. Lett., Vol. 69, p. 3872, 1996.
[6] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. DenBaars, and U. K. Mishra, “ Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors” , Appl. Phys. Lett., Vol. 69, p. 1438, 1996.
[7] K. Kato, “ Ultrawide-band/high-Frequency photodetectors” , IEEE Trans. Microwave Theory Tech., Vol. 47, pp. 1265-1281, 1999.
[8] S.Y. Chou, and M.Y. Liu, “ Nanoscale tera-hertz metal-semiconductor-metal photodetectors” , IEEE, J. of Quantum Electron., Vol. 28, pp. 2358-2368, 1992.
[9] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, “ AlGaN ultraviolet photoconductors grown on sapphire”, Appl. Phys. Lett., Vol. 68, No. 15, p. 2100, 1996.
[10] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, “ Low-frequency noise and performance of GaN p-n junction photodetectors”, J. Appl. Phys., Vol. 83, No.4, p. 2142, 1997.
[11] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, and M. Razeghi, “ Visible blind GaN p-i-n photodiodes”, Appl. Phys. Lett., Vol. 72, No.25, p.3303, 1998.
[12] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “ Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN”, J. Appl. Phys., Vol. 83, pp. 6148-6160, 1998.
[13] Y. Tian, S. J. Chua, and H. Wang, “ Theoretical study of characteristics in GaN metal–semiconductor–metal photodetectors”, Solid State Electron., Vol. 47, p. 1863, 2003.
[14] H. Jiang, T. Egawa, H. Ishikawa, C. Shao and T. Jimbo, “ Visible-blind metal-semiconductor-metal photodetectors based on undoped AlGaN/GaN high electron mobility transistor structure”, Jpn. J. Appl. Phys., Vol. 43,No. 5B, p. L683, 2004.
[15] R. P. Joshi and A. N. Dharamsi, and J. McAeloo, “ Simulations for the high-speed response of GaN metal-semiconductor-metal photodetectors”, Appl. Phys. Lett., Vol. 64, No.25, pp. 3611-3613, 1994.
[16] J. C. Carrano, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “ Very low dark current metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN epitaxial layers”, Appl. Phys. Lett., Vol. 70, p. 1992, 1997.
[17] J. C. Carrano, T. Li, D. L. Brown, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “ Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN”, Appl. Phys. Lett., Vol. 73, p. 2405, 1998.
[18] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “ High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett., Vol. 74, p. 762, 1999.
[19] E. Monroy, F. Calle, E. Muñoz, and F. Omnès, “ AlGaN metal–semiconductor–metal photodiodes”, Appl. Phys. Lett., Vol. 74, p. 3401, 1999.
[20] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z.Chen, and Y. D. Zheng, “ Metal–semiconductor–metal GaN ultraviolet photodetectors on Si(111)”, Appl. Phys. Lett., Vol. 77, p. 444, 2000.
[21] G. L. Chen, F. C. Chang, W.C. Chuang, H. M Chung, K. C. Shen, W. H. Chen, M. C. Lee and W. K. Chen, “ Comparative study of Schottky diode characteristics in Ni, Ta and Ni/Ta metal contact schemes on n-GaN”, Jpn. J. Appl. Phys., Vol. 40, p. L660, 2001.
[22] S. W. Seo, K. K. Lee, Sangbeom Kang, S. Huang, W. A. Doolittle, N. M. Jokerst, and A. S. Brown, “ GaN metal–semiconductor–metal photodetectors grown on lithium gallate substrates by molecular-beam epitaxy”, Appl. Phys. Lett., Vol. 79, pp. 1372-1374, 2001.
[23] S. M. Sze, John Wiley and Sons, Physics of Semiconductor Device, 2nd edition, pp. 749-752, 1985.
Chapter2
[1] Pallab Bhattacharya, Prentice-Hall International, Inc., Semiconductor Optoelectronic Devices, p. 330, 1994.
[2] B. J. Van Zeghbroeck, W. Patrick, J. M. Halbout, and P. Vettiger, “ 105-GHz bandwidth metal-semiconductor-metal photodiode”, IEEE Electron Device Lett., Vol. 9, p. 527, 1988.
[3] W.C. Koscielniak, J. L. Pelouard, and M.A. Littlejohn, “ Dynamic behavior of photocarriers in a GaAs metal-semiconductor-metal photodetector with sub-half-micron electrode pattern”, Appl. Phys. Lett., Vol. 54, pp. 567-569, 1989.
[4] F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, and M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, “ Picosecond GaAs-based photoconductive optoelectronic detectors”, Appl. Phys. Lett., Vol. 54, pp. 890-892, 1989.
[5] O. Wada, H. Nobuhara, H. Hamaguchi, T. Mikawa, A. Tackeuchi, and T. Fujii, “ Very high speed GaInAs metal-semiconductor-metal photodiode incorporating an AlInAs/GaInAs graded superlattice” , Appl. Phys. Lett., Vol. 54, p. 16, 1989.
[6] J. Burm, K. I. Litvin, D. W. Woodard, W. J. Schaff, P. Mandeville, M. A. Jaspan, M. M. Gitin, and L. F. Eastman, “ High-frequency, high-efficiency MSM photodetectors”, IEEE J. Quantum Electron., Vol. 31, p. 1504, 1995.
[7] D. K. Schroder, John Wiley and Sons, Semiconductor material and device characterization, 2nd edition, p. 169, 1985.
[8] S. M. Sze, D. J. Coleman, Jr., and A. Loya, “ Current transport in metal-semiconductor-metal (MSM) structures”, Solid-State Electron., Vol. 14, p. 1212, 1971.
[9] E. H. Rhoderick, and R. H. Williams, Clarendon press, Oxford, Metal-semiconductor contacts, 2nd edition, pp. 118-121, 1988.
[10] E. H. Rhoderick, and R. H. Williams, Clarendon press, Oxford, Metal-semiconductor contacts, 2nd edition, pp. 109-117, 1988.
[11] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “ Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN”, J. Appl. Phys., Vol. 83, pp. 6148-6160, 1998.
Chapter3
[1] J. C. Carrano, T. Li, D. L. Brown, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, " Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN", Appl. Phys. Lett., Vol. 73, p. 2405, 1998.
[2] M. A. Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “ III–nitride UV devices”, Jpn. J. Appl. Phys., Vol. 44, No. 10, p. 7194, 2005.
[3] S. Y. Chou, and M. Y. Liu, “ Nanoscale tera-hertz metal-semiconductor-metal photodetectors”, IEEE J. Quantum Electron., Vol. 28, p. 2358, 1992.
[4] H. C. Casey Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. DenBaars, “ Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett., Vol. 68, p. 1850, 1996.
[5] B. Gaffey, L. J. Guido, X. W. Wang, and T. P. Ma, “ High-quality oxide/nitride/oxide gate insulator for GaN MISstructures”, IEEE Trans. Electron Devices, Vol. 48, p. 458, 2001.
[6] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “ Effect of temperature on Ga2O3(Gd2O3)/GaN metal-oxide-semiconductor field-effect transistors”, Appl. Phys. Lett., Vol. 73, p. 3893, 1998.
[7] C. T. Lee, H. Y. Lee, and H. W. Chen,“ GaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method”, IEEE Electron Device Lett., Vol. 24, pp. 54-56, 2003.
[8] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “ Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer”, Appl. Phys. Lett., Vol. 82, pp. 2913-2915, 2003.
[9] M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, S. J. Chang, C. J. Kao, C. J. Tun, M. G. Chen, W. H. Chang, and G. C. Chi, “ Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer”, J. Appl. Phys., Vol. 94, pp. 1753-1757, 2003.
[10] J. H. Burroughes, “ H-MESFET compatible GaAs/AlGaAs MSM photodetector”, IEEE Photon. Technol. Lett., Vol. 3, p. 660, 1991.
[11] A. T. Collins, E. C. Lightowlers, and P. J. Dean, “ Lattice vibration spectra of aluminum nitride”, Phys. Rev., Vol. 158, p. 833, 1967.
[12] T. Hashizume, E. Alekseev, D. Pavlidis, K. S. Boutros and J. Redwing,“Capacitance-voltage characterization of AlN/GaN metal-insulator-semiconductor structures grown on sapphire substrate by metalorganic chemical vapor deposition”, J. Appl. Phys., Vol. 88, pp. 1983-1986, 2000.
[13] S. Imanaga, F. Nakamura and H. Kawai, “ Current-voltage characteristics of AlN/GaN heterostructure metal insulator semiconductor diode” , Jpn. J. Appl. Phys., Vol. 40, pp. 1194-1198, 2001.
[14] E. G. Brazel, M. A. Chin, and V. Narayanamurti, “ Direct observation of localized high current densities in GaN films”, Appl. Phys. Lett., Vol. 74, pp. 2367-2368, 1999.
[15] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, and M. Asif Khan, “ SiO2-passivated lateral-geometry GaN transparent Schottky- barrier detectors”, Appl. Phys. Lett., Vol. 77, pp. 863-865, 2000.
[16] K. L. Chopra, S. Major, and D. K. Pandya, “ Transparent conductors - a status review”, Thin Solid Films, Vol. 102, No.1, pp. 1-46, 1983.
[17] C. G. Granqvist, “ Transparent conductive electrodes for electrochromic devices: A review”, Appl. Phys. A-Mater. Sci. Process., Vol. 57, No.1, pp. 19-24, 2004.
[18] I. Hamberg and C. G. Granqvist, “ Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows”, J. Appl. Phys., Vol. 60, pp. R123-R160, 1986.
[19] J.D. Hwang, G.H. Yang, W.T. Chang, C.C. Lin, R.W. Chuang, S.J. Chang, “ A novel transparent ohmic contact of indium tin oxide to n-type GaN”, Microelectron. Eng., Vol. 77, pp. 71-75, 2005.
[20] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films, IOP Publishing, Bristol, 1995.
[21] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “ GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE Photonics Technol. Lett., Vol. 13, p. 848, 2001.
[22] W. Gao, A.-S. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O’Bryan, D. Sivco, and A. Y. Cho, “ In0.53Ga0.47As metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts”, Appl. Phys. Lett., Vol. 65, No.25, p. 1930, 1994.
[23] G. C. Yi, and B. W. Wessels, “ Deep level defects in n-type GaN compensated with Mg”, Appl. Phys. Lett., Vol. 68, pp. 3769-3771, 1996.
[24] K. Saarinen, J. Nissila, P. Hautojarvi, J. Likonen, T. Suski, I. Grzegory, B. Lucznik, and S. Porowski, “ The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals,” Appl. Phys. Lett., Vol. 75, pp. 2441-2443, 1999.
[25] S. Nakamura and G. Fasol, The Blue Laser Diode, 1st ed. Berlin, Germany, Springer-Verlag, 1997.
[26] S. J. Chang, S. C. Wei, Y. K. Su, C. H. Liu, S. C. Chen, U. H. Liaw, T. Y. Tsai, T. H. Hsu, “ AlGaN/GaN modulation-doped field-effect transistors with an Mg-doped carrier confinement layer”, Jpn. J. Appl. Phys., Vol. 42, pp. 3316-3319, 2003.
[27] Y. K. Su, S. C. Wei, R. L. Wang, S. J. Chang, C. H. Ko, T. M. Kuan, “ Flicker noise of GaN-based heterostructure field-effect transistors with Si-doped AlGaN carrier injection layer”, IEEE Electron Dev. Lett., Vol. 24, pp. 622-624, 2003.
[28] T. M. Kuan, S. J. Chang, Y. K. Su, J. C. Lin, S. C. Wei, C. K. Wang, C. I. Huang, W. H. Lan, J. A. Bardwell, H. Tang, W. J. Lin, Y. T. Cherng, “ High-performace GaN/InGaN heterostructure FETs on Mg-doped GaN current blocking layers”, J. Cryst. Growth, Vol. 272, pp. 300-304, 2004.
[29] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars, and J. S. Spect, “ Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor desposition,” Appl. Phys. Lett., Vol. 72, pp. 2247-2249, 1998.
[30] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, “ Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes” Appl. Phys. Lett., Vol. 78, pp. 1685-1687, 2001.
[31] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “ Back-illuminated MSM UV photodetector with high internal gain”, Jpn. J. Appl. Phy., vol. 40, pp. L505–L507, 2001.
Chapter 4
[1] F.A. Ponce and D.P. Bour, “ Nitride-based semiconductors for blue and green light-emitting devices”, Nature, Vol. 386, pp. 351-359, 1997.
[2] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, “ Low-frequency noise and performance of GaN p-n junction photodetectors”, J. Appl. Phys., Vol. 83, pp. 2142-2146, 1998.
[3] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez and M. Razeghi, “ High quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett., Vol. 74, pp. 1171-1173, 1999.
[4] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, V. Divarahan, J. Yang, G. Simin and M. Asif Khan, “ Low-frequency noise in Al0.4Ga0.6N-based Schottky barrier photodetectors”, Appl. Phys. Lett., Vol. 79, pp. 866-868, 2001.
[5] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz and M. Razeghi, “ High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett., Vol. 74, pp. 762-764, 1999.
[6] D. L. Rogers, “ Integrated optical receivers using MSM detectors”, J. Lightwave Technol., Vol. 9, pp. 1635–1638, 1991.
[7] D. G. Parker and P. G. Say, “ Indium tin oxide/GaAs photodiodes for millimetric-wave applications”, Electron. Lett., Vol. 22, pp. 1266-1267, 1988.
[8] J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair and M. J. Reed, " Ultraviolet-visible metal-semiconductor-metal photodetectors fabricated from InxGa1-xN (0≦x≦0.13) ", J. Electron. Mater., Vol. 31, No. 1, pp. L1-L6, 2002.
[9] R. H. Yuang, J. L. Shieh, J. I. Chyi, and J. S. Chen, “ Overall performance improvement in GaAs MSM photodetectors by using recessed-cathode structure”, IEEE Photon. Technol. Lett., Vol. 9, No. 2, pp. 226-228, 1997.
[10] B. J. Van Zeghbroeck, William Patrick, J.-M. Halbout, and P. Vettiger, “ 105-GHz bandwidth metal-semiconductor-metal photodiode”, IEEE Electron Device Lett., vol. 9, pp. 527–529, 1988.
[11] J. B. D. Soole and H. Schumacher, “ Transit-time limited frequency response of InGaAs MSM photodetectors”, IEEE Trans. Electron Devices, vol. 37, pp. 2285–2291, 1990.
[12] J. D. Guo, M. S. Feng and R. J. Guo, F. M. Pan and C. Y. Chang, “ Study of Schottky barriers on n-type GaN grown by low-pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 67, pp. 2657-2659, 1995.
[13] Y. C. Lin, S. J. Chang, Y. K. Su, J. F. Chen, S. C. Shei, S. J. Hsu, C. H. Liu, U. H. Liaw and B. R. Huang, “ Inductively coupled plasma etching of GaN using Cl2/He gases”, Mater. Sci. Eng. B, Vol. 98, No. 1, pp. 60-64, 2003.
[14] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “ Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN”, J. Appl. Phys., Vol. 83, pp. 6148-6160, 1998.
[15] D. A. Gaul, and W. S. Rees, Jr., “ True blue inorganic optoelectronic devices”, Adv. Mater., Vol. 12, No. 13, pp. 60-64, 2000.
Chapter 5
[1] T. K. Ko, S. J. Chang, Y. K. Su, M. L. Lee, C. S. Chang, Y. C. Lin, S. C. Shei, J. K. Sheu, W. S. Chen, and C. F. Shen, “ AlGaN/GaN Schottky-barrier photodetectors with LT GaN cap layers”, J. Crystal Growth, Vol. 283, pp. 68-71, 2005.
[2] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, and E. L. Hu, “ Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride”, Appl. Phys. Lett., Vol. 84, No. 17, pp. 3322-3324, 2004.