簡易檢索 / 詳目顯示

研究生: 孫珮綺
Sun, Pei-Qi
論文名稱: 膽固醇對陰陽離子液胞之物理穩定性、粒徑、雙層膜堅硬度和親水性藥物包覆效率的影響
Cholesterol Effects on the Physical Stability, Size, Bilayer Rigidity and Hydrophilic Drug Encapsulation Efficiency of Catanionic Vesicles
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 118
中文關鍵詞: 陰陽離子界面活性劑陰陽離子液胞強制製程液胞形成之機制膽固醇效應溫度效應液胞物理穩定性液胞粒徑雙層膜堅硬度親水性藥物包覆效率
外文關鍵詞: Catanionic surfactant, Catanionic vesicle, Mechanism of vesicle formation, Cholesterol effects, Temperature effect, Vesicle physical stability, Vesicle size, Bilayer rigidity, Hydrophilic drug encapsulation efficiency
相關次數: 點閱:166下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陰陽離子界面活性劑(catanionic surfactant)又稱為離子對雙親分子(ion-pair amphiphile, IPA) 。其分子結構類似脂質,同時具有價格低廉、化學穩定性,化學結構可設計等優點,為一製備液胞藥物載體的新型材料。本研究透過沉澱法合成陰陽離子界面活性劑DeTMA-TS (decyltrimethylammonium-tetradecylsulfate, C10-C14),並添加不同比例的膽固醇(XCHOL= 0~0.5)作為膜內穩定劑,透過強制製程製備陰陽離子液胞分散液,探討膽固醇濃度及製程溫度對其物理特性之影響。並利用螢光偏極化方法測定液胞雙層膜堅硬度,進一步探討液胞粒徑和雙層膜堅硬度之間的關聯,以驗證強制製程液胞形成之機制。為探討液胞的藥物包覆行為,另以緩衝溶液(Tris-HCL buffer, pH= 7.4)製備液胞分散液以模擬人體生理環境,並包覆親水性藥物熊果素(Arbutin),分析其物理特性和包覆效率之關聯。
    實驗結果顯示添加膽固醇有助於提升液胞的物理穩定性。隨著膽固醇濃度增加,液胞粒徑增大,螢光非等向性(anisotropy) r值也提升,顯示雙層膜堅硬度也會增加。此外,製程溫度也會影響液胞的粒徑和雙層膜堅硬度。在高於雙層膜相轉移溫度(Tm)的條件下,製程溫度愈低,雙層膜愈堅硬,液胞粒徑也較大。分析實驗結果顯示液胞粒徑和雙層膜堅硬度之間具有高度的線性正相關,這也為強制製程液胞形成機制中,主張雙層膜堅硬度愈大,形成的液胞粒徑也愈大,提供了有力的證據。此一結論也可在其他種類的陰陽離子液胞及脂質體的製備獲得驗證。此外,親水性藥物熊果素的包覆實驗結果顯示,隨著膽固醇濃度增加,粒徑隨之增大,而包覆效率也跟著提升,液胞粒徑和包覆效率呈現正相關。本研究的最後結論是:添加劑膽固醇除了可以穩定液胞,增進雙層膜堅硬度,也可以提升液胞的粒徑,增加液胞內水相的總體積,進而提升對親水性藥物的包覆效率。

    Catanionic surfactants (also known as ion-pair amphiphiles, IPAs) have emerged as attractive materials for preparing novel vesicular carriers of drug delivery systems due to their benefits of abundant sources, low cost, chemical stability, and designable chemical structure, and so on. In this work, catanionic surfactant DeTMA-TS (decyltrimethylammonium-tetradecylsulfate) was synthesized and used for the preparations of catanionic vesicles with molar fraction of cholesterol (CHOL), XCHOL, ranging from 0 to 0.5 by a mechanical disruption approach. Effects of CHOL and process temperature on the physical properties of catanionic vesicles were investigated. Furthermore, fluorescence polarization technique was employed to measure the ordering and rigidity of vesicular bilayers. Relationship between the steady state fluorescence anisotropy (r) and vesicle diameter (D) was established with the aim to validate the mechanism of vesicle formation, which advocates that the higher the bilayer rigidity the larger the vesicle size. In addition, encapsulation efficiency of the hydrophilic drug Arbutin was also determined for the catanionic vesicles in a buffer solution.
    The experimental results revealed that the physical stability of catanionic vesicles is enhanced by the addition of CHOL. Both D and r, that is bilayer rigidity, are increased with the increasing of CHOL concentration. Temperature, under which vesicles were prepared by the mechanical dispersion process, was found to be another factor that affects D and r. Lower process temperature and therefore higher r resulted in larger D. A significant positive correlation between D and r was shown by analyzing the available data. This result provided strong evidence for the mechanism of vesicle formation delineated above. Moreover, it was shown that this is also valid for vesicles prepared from other catanionic surfactants and lipid. Finally, the results of arbutin encapsulation showed that increasing CHOL concentration lead to the larger vesicle size and higher encapsulation efficiency (E.E.). There is a positive correlation between vesicle D and E.E. In conclusions, the addition of CHOL contributed to enhancing physical stability, promoting bilayer rigidity, increasing size, and improving hydrophilic drug encapsulation of catanionic vesicles.

    摘要 I Extended Abstract III 誌謝 XVI 總目錄 XVII 表目錄 XX 圖目錄 XXII 第1章 緒論 1 1-1 前言 1 1-2 研究動機與目的 8 第2章 文獻回顧 10 2-1 陰陽離子界面活性劑(離子對雙親分子) 10 2-2 陰陽離子液胞 12 2-2-1 陰陽離子液胞的製備方式 14 2-2-2 陰陽離子液胞的結構與型態 14 2-3 液胞的物理穩定性 17 2-3-1 膽固醇效應 21 2-4 添加劑對液胞雙層膜的特性之影響 22 2-4-1 不同相態下膽固醇效應之影響 22 2-4-2 膽固醇效應對於雙層膜堅硬度之影響 30 2-4-3 螢光偏極化技術之測定 32 2-5 液胞的水溶性藥物包覆行為 36 2-5-1 預測水溶性藥物包覆效率的理論模型 36 2-5-2 液胞粒徑對水溶性藥物包覆效率的影響 41 第3章 實驗 43 3-1 實驗藥品 44 3-2 實驗儀器及裝置 47 3-2-1 超音波震盪分散裝置 47 3-2-2 動態雷射光散射儀 (Dynamic Light Scattering, DLS) 48 3-2-3 螢光分光光譜儀 (Fluorescence spectrometer) 49 3-2-4 離心濃縮過濾法(centrifugal filtration concentration) 51 3-2-5 高效液相層析儀 (High Performance Liquid Chromatography) 52 3-2-6 電子控溫裝置 53 3-2-7 穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 54 3-3 實驗方法 55 3-3-1 離子對雙親分子(ion-pair amphiphile)的製備 55 3-3-2 陰陽離子液胞的製備 56 3-3-3 粒徑分布與液胞存活期的測量 57 3-3-4 液胞水溶性藥物熊果素(Arbutin) 包覆效率測定實驗 58 3-3-5 液胞雙層膜之螢光非等向性的測量 60 3-3-6 穿透式電子顯微鏡的分析 61 第4章 結果與討論 62 4-1 陰陽離子液胞之物理特性分析 63 4-1-1 膽固醇效應 63 4-1-2 製程溫度效應 68 4-2 陰陽離子液胞粒徑形成之機制 72 4-2-1 強制製程液胞形成之假設機制 74 4-2-2 液胞曲率對於雙層膜堅硬度之影響 76 4-2-3 製備完成液胞粒徑之溫度效應 78 4-3 雙層膜堅硬度與液胞粒徑之關聯 82 4-4 陰陽離子液胞之親水性藥物包覆實驗 89 4-4-1 影響親水性藥物包覆效率之可能原因 91 4-4-2 陰陽離子液胞作為藥物載體之可行性 94 第5章 結論與建議 95 5-1 結論 95 5-2 建議 97 參考文獻 98 附錄 : 膽固醇和製程溫度對粒徑影響的複迴歸分析 111 附錄 : T vs. D線性關聯的顯著性檢定 114 附錄 : r vs. D線性關聯的顯著性檢定 117

    1. Jesorka, A. and O. Orwar, Liposomes: Technologies and analytical applications. Annual Review of Analytical Chemistry, 1: p. 801-832, 2008.
    2. Gregoriadis, G. (Ed.), Liposomes as drug carriers: Recent trends and progress. Wiley, 1988.
    3. Lasic, D.D., Liposomes: From physics to applications. Elsevier, 1993.
    4. New, R.R.C. (Ed.), Liposomes: A practical approach. Oxford, 1990.
    5. 陳炳宏 and 馮思慎, 微脂粒在藥物輸送的應用.化工, 47(3): p. 68-84, 2000.
    6. Ahmad, I., M. Longenecker, J. Samuel, and T. M. Allen, Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Research, 53(7): p. 1484-1488, 1993.
    7. Karmali, P.P. and A. Chaudhuri, Cationic liposomes as non‐viral carriers of gene medicines: Resolved issues, open questions, and future promises. Medicinal Research Reviews, 27(5): p. 696-722, 2007.
    8. Deepthi, V. and K. An, Liposomal drug delivery system–a review. Rajiv Gandhi University of Health Sciences Journal of Pharmaceutical Sciences, 4(2): p. 47-56, 2014.
    9. Mouritsen, O.G., Lipids, curvature, and nano‐medicine. European Journal of Lipid Science and Technology, 113(10): p. 1174-1187, 2011.
    10. Anwekar, H., S. Patel, and A. Singhai, Liposome-as drug carriers. International Journal of Pharmacy and Life Sciences, 2(7): p. 945-951, 2011.
    11. Subedi, R.K., S.Y. Oh, M.K. Chun, H.K. Choi, Recent advances in transdermal drug delivery. Archives of Pharmacal Research, 33(3): p. 339-351, 2010.
    12. Laouini, A., C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset, and H. Fessi, Preparation, characterization and applications of liposomes: state of the art. Journal of Colloid Science and Biotechnology, 1(2): p. 147-168, 2012.
    13. Blandamer, M.J., B. Briggs, P.M. Cullis, B.J. Rawlings, and J.B.F.N. Engberts, Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC. Physical Chemistry Chemical Physics, 5(23): p. 5309-5312, 2003.
    14. Chung, Y.C. and S.L. Regen, Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants. Langmuir, 9(7): p. 1937-1939, 1993.
    15. Bhattacharya, S. and S. Haldar, The effects of cholesterol inclusion on the vesicular membranes of cationic lipids. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1283(1): p. 21-30, 1996.
    16. Kaler, E.W., A.K. Murthy, B.E. Rodriguez, J.A.N. Zasadzinski, Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 245(4924): p. 1371-1374, 1989.
    17. Yu, W.Y., Y.M. Yang, and C.H. Chang, Cosolvent effects on the spontaneous formation of vesicles from 1: 1 anionic and cationic surfactant mixtures. Langmuir, 21(14): p. 6185-6193, 2005.
    18. Tondre, C. and C. Caillet, Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis. Advances in Colloid and Interface Science, 93(1-3): p. 115-134, 2001.
    19. Dhawan, V.V. and M.S. Nagarsenker, Catanionic systems in nanotherapeutics–Biophysical aspects and novel trends in drug delivery applications. Journal of Controlled Release, 266: p. 331-345, 2017.
    20. Garg, V., H. Singh, S. Bimbrawh, S.K. Singh, M. Gulati, Y. Vaidya, and P. Kaur, Ethosomes and transfersomes: Principles, perspectives and practices. Current Drug Delivery, 14(5): p. 613-633, 2017.
    21. Soussan, E., S. Cassel, M. Blanzat, and I. Rico-Lattes, Drug delivery by soft matter: Matrix and vesicular carriers. Angewandte Chemie - International Edition, 48(2): p. 274-288, 2009.
    22. Bramer, T., N. Dew, and K. Edsman, Pharmaceutical applications for catanionic mixtures. Journal of Pharmacy and Pharmacology, 59(10): p. 1319-1334, 2007.
    23. Koehler, R.D., S.R. Raghavan, and E.W. Kaler, Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. . The Journal of Physical Chemistry B, 104(47): p. 11035-11044, 2000.
    24. Lee, J.H., J.P. Gustin, T. Chen, G.F. Payne, and S.R. Raghavan, Vesicle− biopolymer gels: Networks of surfactant vesicles connected by associating biopolymers. Langmuir, 21(1): p. 26-33, 2005.
    25. Marques, E.F., O. Regev, A. Khan, B. Lindman, Self-organization of double-chained and pseudodouble-chained surfactants: Counterion and geometry effects. . Advances in Colloid and Interface Science, 100-102: p. 83-104, 2003.
    26. Chien, C.L., S.J. Yeh, Y.M. Yang, C.H. Chang, and J.R. Maa, Formation and encapsulation of catanionic vesicles. Journal of Colloid and Interface Science, 24: p. 31-45, 2002.
    27. Yeh, S.J., Y.M. Yang, and C.H. Chang, Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles. Langmuir, 21(14): p. 6179-6184, 2005.
    28. Lee, W.H., Y.L Tang, T.C. Chiu, and Y.M. Yang, Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers. Journal of Chemical & Engineering Data, 60(4): p. 1119-1125, 2015.
    29. Wu, K.C., Z.L. Huang, Y.M. Yang ,C.H. Chang, and T.H Chou, Enhancement of catansome formation by means of cosolvent effect: Semi-spontaneous preparation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3): p. 599-607, 2007.
    30. Yang, Y.M., K.C. Wu, Z.L. Huang, and C.H. Chang, On the stability of liposomes and catansomes in aqueous alcohol solutions. Langmuir, 24(5): p. 1695-1700, 2008.
    31. Huang, Z.L., J.Y. Hong, C.H. Chang, and Y.M. Yang, Gelation of charged catanionic vesicles prepared by a semispontaneous process. Langmuir, 26(4): p. 2374-2382, 2010.
    32. Liu, Y.S., C.F. Wen, and Y.M. Yang, Development of ethosome-like catanionic vesicles for dermal drug delivery. Journal of the Taiwan Institute of Chemical Engineers, 43(6): p. 830-838, 2012.
    33. Chiu, C.W., C.H. Chang, and Y.M. Yang, Ethanol effects on the gelation behavior of α-tocopherol acetate-encapsulated ethosomes with water-soluble polymers. Colloid and Polymer Science, 291(6): p. 1341-1352, 2012.
    34. Chiu, C.W., C.H. Chang, and Y.M. Yang, Gelation of ethosome-like catanionic vesicles by water-soluble polymers: Ethanol and cholesterol effects. Soft Matter, 9(31), 2013.
    35. Liu, Y.S., C.F. Wen, and Y.M. Yang, Cholesterol effects on the vesicular membrane rigidity and drug encapsulation efficiency of ethosome-like catanionic vesicles. Science of Advanced Materials, 6(5): p. 954-962, 2014.
    36. Tomašić, V. and T. Mihelj, The review on properties of solid catanionic surfactants: Main applications and perspectives of new catanionic surfactants and compounds with catanionic assisted synthesis. Journal of Dispersion Science and Technology, 38(4): p. 515-544, 2016.
    37. 謝佑翎, 乙醇與膽固醇對 DPPC 脂質體雙層膜特性之影響. 成功大學化學工程學系碩士學位論文, 2017.
    38. 鄭嘉瑜, 以螢光偏極化技術探討膽固醇對離子對雙親分子液胞雙層膜堅硬度的影響. 成功大學化學工程學系碩士學位論文, 2019.
    39. Lasic, D.D., The mechanism of vesicle formation. Biochemical Journal, 256(1): p. 1-11, 1988.
    40. Scott, A.B., H. Tartar, and E. Lingafelter, Electrolytic properties of aqueous solutions of octyltrimethylammonium octanesulfonate and decyltrimethylammonium decanesulfonate. Journal of the American Chemical Society, 65(4): p. 698-701, 1943.
    41. Jokela, P., B. Joensson, and A. Khan, Phase equilibria of catanionic surfactant-water systems. Journal of Physical Chemistry, 91(12): p. 3291-3298, 1987.
    42. Fukuda, H., K. Kawata, and H. Okuda, Bilayer-forming ion pair amphiphiles from single-chain surfactants. Journal of the American Chemical Society, 112(4): p. 1635-1637, 1990.
    43. Hirano, K., H. Fukuda, and S.L. Regen, Polymerizable ion-paired amphiphiles. Langmuir, 7(6): p. 1045-1047, 1991.
    44. Dubois, M., B. Deme, T. Gulik-Krzywicki, J.C. Dedieu, C. Vautrin, S. Desert, E. Perez, and T. Zemb, Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature, 411(6838): p. 672-675, 2001.
    45. Dubois, M., V. Lizunov, A. Meister, T. Gulik-Krzywicki, J.M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Shape control through molecular segregation in giant surfactant aggregates. Proceedings of the National Academy of Sciences, 101(42): p. 15082-15087, 2004.
    46. Chung, M.H., C. Park, B.C. Chun, and Y.C. Chung, Polymerized ion pair amphiphile vesicles with pH-sensitive transformation and controlled release property. Colloids Surf B Biointerfaces, 34(3): p. 179-184, 2004.
    47. Blanzat, M., E. Perez, I. Rico-Lattes, D. Prome, J.C. Prome, and A. Lattes, New catanionic glycolipids. 1. Synthesis, characterization, and biological activity of double-chain and gemini catanionic analogues of galactosylceramide (galβ1cer). Langmuir, 15(19): p. 6163-6169, 1999.
    48. Panda, A.K., F. Possmayer, N.O. Petersen, K. Nage, and S.P. Moulik, Physico-chemical studies on mixed oppositely charged surfactants: Their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 264(1-3): p. 106-113, 2005.
    49. Teixeira, C.V., M. Blanzat, J. Koetz , I. Rico-Lattes, and G. Brezesinski, In-plane miscibility and mixed bilayer microstructure in mixtures of catanionic glycolipids and zwitterionic phospholipids. . Biochim Biophys Acta, 1758(11): p. 1797-1808, 2006.
    50. Israelachvili, J.N. (3rd Ed.), Intermolecular and Surface Forces. Elsevier, 1992.
    51. Touitou, E., N. Dayana, L. Bergelson, B. Godin, and M. Eliaz, Ethosomes—novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. Journal of controlled release, 65(3): p. 403-418, 2000.
    52. Stokes, R.J. and D.F. Evans (Ed.), Fundamentals of interfacial engineering. John Wiley & Sons. 1996.
    53. Iampietro, D.J. and E.W. Kaler, Phase behavior and microstructure of aqueous mixtures of cetyltrimethylammonium bromide and sodium perfluorohexanoate. Langmuir, 15(25): p. 8590-8601, 1999.
    54. Kaler, E.W., K.L. Herrington, and A.K. Murthy, Phase behavior and structures of mixtures of anionic and cationic surfactants. The Journal of Physical Chemistry, 96(16): p. 6698-6707, 1992.
    55. Marques, E.F., Size and stability of catanionic vesicles: Effects of formation path, sonication, and aging. Langmuir, 16(11): p. 4798-4807, 2000.
    56. Yatcilla, M.T., K.L. Herrington, L.L. Brasher, and E.W. Kaler, Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS). The Journal of Physical Chemistry, 100(14): p. 5874-5879, 1996.
    57. 王俊為, 單一雙層陰陽離子液胞的水溶性藥物包覆效率之理論與實驗比較研究-乙醇及膽固醇效應. 成功大學化學工程學系碩士學位論文, 2018.
    58. Petrache, H.I., T. Zemb, L. Belloni, and V.A. Parsegian, Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proceedings of the National Academy of Sciences, 103(21): p. 7982-7987, 2006.
    59. Walz, J.Y. and E. Ruckenstein, Comparison of the van der Waals and undulation interactions between uncharged lipid bilayers. The Journal of Physical Chemistry B, 103(35): p. 7461-7468, 1999.
    60. Brown, M.F., R.L. Thurmond, S.W. Dodd, D. Otten, and K. Beyer, Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. Journal of the American Chemical Society, 124(28): p. 8471-8484, 2002.
    61. Evans, E. and D. Needham, Physical properties of surfactant bilayer membranes: Thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. Journal of Physical Chemistry, 91(16): p. 4219-4228, 1987.
    62. Grasso, D., K. Subramaniam, M. Butkus, K. Strevett, and J. Bergendahl, A review of non-DLVO interactions in environmental colloidal systems. . Reviews in Environmental Science and Biotechnology, 1(1): p. 17-38, 2002.
    63. Sabin, J., G. Prieto, J.M. Ruso, R. Hidalgo-Alvarez, and F. Sarmiento, Size and stability of liposomes: A possible role of hydration and osmotic forces. The European Physical Journal E, 20(4): p. 401-408, 2006.
    64. Bramer T., M. Paulsson, K. Edwards, and K. Edsman, Catanionic drug–surfactant mixtures: Phase behavior and sustained release from gels. Pharmaceutical Research, 20: p. 1661-1667, 2003.
    65. Abu Lila, A.S., S. Kizuki, Y. Doi, T. Suzuki, T. Ishida, and H. Kiwada, Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model. Journal of Controlled Release, 137(1): p. 8-14, 2009.
    66. Yang, Y.M., K.C. Wu, Z.L. Huang, and C.H. Chang, On the stability of liposomes and catansomes in aqueous alcohol solutions. Langmuir, 24: p. 1695-1700, 2008.
    67. Huang, J.B., B.Y. Zhu, M. Mao, P. He, J. Wang, and X. He, Vesicle formation of 1: 1 cationic and anionic surfactant mixtures in nonaqueous polar solvents. Colloid and Polymer Science, 277(4): p. 354-360, 1999.
    68. Huang, J.B., B.Y. Zhu, G.X. Zhao, and Z.Y. Zhang, Vesicle formation of a 1: 1 catanionic surfactant mixture in ethanol solution. Langmuir, 13(21): p. 5759-5761, 1997.
    69. Wang, C., S. Tang, J. Huang, X. Zhang, and H. Fu, Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems. Colloid & Polymer Science, 280(8): p. 770-774, 2002.
    70. Huang, J.B. and G.X. Zhao, Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant. . Colloid and Polymer Science, 273(2): p. 156-164, 1995.
    71. Zhang, X.R., J.B. Huang, M. Mao, S.H. Tang, and B.Y. Zhu, From precipitation to vesicles: A study on self-organized assemblies by alkylammonium and its mixtures in polar solvents. Colloid and Polymer Science, 279(12): p. 1245-1249, 2001.
    72. Mannock, D.A., R.N. Lewis, and R.N. McElhaney, Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophysical Journal, 91(9): p. 3327-3340, 2006.
    73. Bin, X. and J. Lipkowski, Electrochemical and PM-IRRAS studies of the effect of cholesterol on the properties of the headgroup region of a DMPC bilayer supported at a Au (111) electrode. The Journal of Physical Chemistry B, 110(51): p. 26430-26441, 2006.
    74. Cevc, G., Hydration force and the interfacial structure of the polar surface. Journal of the Chemical Society, Faraday Transactions, 87(17), 1991.
    75. McIntosh, T.J., A.D. Magid, and S.A. Simon, Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry, 28(1): p. 17-25, 1989.
    76. Lonnfors, M., O. Engberg, B.R. Peterson, and J.P. Slotte, Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes. Langmuir, 28(1): p. 648-655, 2012.
    77. Silva, C., F.J. Aranda, A. Ortiz, V. Martínez, M. Carvajal, and J.A. Teruel, Molecular aspects of the interaction between plants sterols and DPPC bilayers: an experimental and theoretical approach. Journal of Colloid and Interface Science, 358(1): p. 192-201, 2011.
    78. Fritzsching, K.J., J. Kim, and G.P. Holland, Probing lipid–cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13C solid-state NMR. Biochimica et Biophysica Acta, 1828(8): p. 1889-1898, 2013.
    79. Benesch, M.G. and R.N. McElhaney, A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta, 1838(7): p. 1941-1949, 2014.
    80. Konno, Y., N. Naito, A. Yoshimura, and K. Aramaki, A study on the formation of liquid ordered phase in lysophospholipid/cholesterol/1, 3-butanediol/water and lysophospholipid/ceramide/1, 3-butanediol/water systems. Journal of Oleo Science, 63(8): p. 823-828, 2014.
    81. Krause, M.R., M. Wang, L. Mydock-McGrane, D.F. Covey, E. Tejada, P.F. Almeida, and S.L. Regen, Eliminating the roughness in cholesterol’s β-face: Does it matter? Langmuir, 30(41): p. 12114-12118, 2014.
    82. Benesch, M.G., R.N. Lewis, and R.N. McElhaney, A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chemistry and Physics of Lipids, 191: p. 123-135, 2015.
    83. Benesch, M.G., R.N.A.H. Lewis, D.A. Mannock, and R.N. McElhaney, A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chemistry and Physics of Lipids, 187: p. 34-49, 2015.
    84. Aramaki, K., Y. Watanabea, J. Takahashia, Y. Tsujia, A. Ogatab, and Y. Konno, Charge boosting effect of cholesterol on cationic liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506: p. 732-738, 2016.
    85. El Khoury, E. and D. Patra, Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes. Journal of Photochemistry and Photobiology B, 158: p. 49-54, 2016.
    86. Bhattacharya, S. and S. Haldar, Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1467(1): p. 39-53, 2000.
    87. Daly, T.A., M. Wang, and S.L. Regen, The origin of cholesterol’s condensing effect. Langmuir, 27(6): p. 2159-2161, 2011.
    88. Krause, M.R., S. Turkyilmaz, and S.L. Regen, Surface occupancy plays a major role in cholesterol's condensing effect. Langmuir, 29(33): p. 10303-10306, 2013.
    89. Alenaizi, R., S. Radimana, I.A. Rahman, and F. Mohamed, Zwitterionic betaine transition from micelles to vesicles induced by cholesterol. Journal of Molecular Liquids, 223: p. 1226-1233, 2016.
    90. Bui, T.T., K. Suga, and H. Umakoshi, Roles of sterol derivatives in regulating the properties of phospholipid bilayer systems. Langmuir, 32(24): p. 6176-6184, 2016.
    91. Yang, J., J. Marti, and C. Calero, Pair interactions among ternary DPPC/POPC/cholesterol mixtures in liquid-ordered and liquid-disordered phases. Soft Matter, 12(20): p. 4557-4561, 2016.
    92. Tien, W.J., K.Y. Chen, F.Y. Huang, and C.C. Chiu, Effects of cholesterol on water permittivity of biomimetic ion pair amphiphile bilayers: Interplay between membrane bending and molecular packing. International Journal of Molecular Sciences, 20(13): p. 3252, 2019.
    93. 賴宇芳, 運用分子模擬探討乙醇共溶劑與膽固醇添加劑對離子對雙親分子雙層膜的結構, 機械與相態特性之綜合影響. 成功大學化學工程學系學位論文, 2020.
    94. Wen, C.F., Y.L. Hsieh, C.W. Wang, T.Y. Yang, C.H. Chang, and Y.M. Yang, Effects of ethanol and cholesterol on thermotropic phase behavior of ion-pair amphiphile bilayers. Journal of Oleo Science, 67(3): p. 295-302, 2018.
    95. Chang, W.H., Y.T. Ch, C.Y. Yu, C.H. Chang, and Y.M. Yang, Effects of sterol-like additives on phase transition behavior of ion-pair amphiphile bilayers. Journal of Oleo Science, 66(11): p. 1229-1238, 2017.
    96. Meyer, F. and B. Smit, Effect of cholesterol on the structure of a phospholipid bilayer. Proceedings of the National Academy of Sciences of the United States of America, 106(10): p. 3654-3662, 2009.
    97. Mannock, D.A., R.N. Lewis, and R.N. McElhaney, A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta, 1798(3): p. 376-88, 2010.
    98. Huang, T.H., C.W.B. Lee, S.K. Das Gupta, A. Blume, and R.G. Griffin, A carbon-13 and deuterium nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: Characterization of liquid-gel phases. Biochemistry, 32: p. 13277-13287, 1993.
    99. Xiang, T.X. and B.D. Anderson, Phase structures of binary lipid bilayers as revealed by permeability of samll molecules. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1370: p. 64-76, 1998.
    100. Cheng, C.Y., Y.F. Lai, Y.L. Hsieh, C.H. Wu, C.C. Chiu, and Y.M. Yang, Divergent effects of cholesterol on the structure and fluidity of liposome and catanionic vesicle membranes. FEBS Letters, 596: p.1827-1838, 2022.
    101. Pottel, H., W.V.D. Meer, and W. Herreman, Correlation between the order parameter and the steady-state fluorescence anisotropy of 1, 6-diphenyl-1, 3, 5-hexatriene and an evaluation of membrane fluidity. Biochimica et Biophysica Acta (BBA)-Biomembranes, 730(2): p. 181-186, 1983.
    102. Heyn, M.P., Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Letters, 108(2): p. 359-364, 1979.
    103. Has, C. and S. Pan, Vesicle formation mechanisms: An overview. Journal of Liposome Research, 31(1): p. 90-111, 2021.
    104. Kelley, E.G., P.D. Butler, R. Ashkar, R. Bradbury, and M. Nagao, Scaling relationships for the elastic moduli and viscosity of mixed lipid membranes. Proceedings of the National Academy of Sciences, 117(38): p. 23365-23373, 2020.
    105. Karal, M.A.S., M. Ahmed, V. Levadny, M. Belaya, Md.K. Ahamed, M. Rahman, and Md.M. Shakil, Electrostatic interaction effects on the size distribution of self-assembled giant unilamellar vesicles. Physical Review E, 101(1-1): p. 012404, 2020.
    106. Chakraborty, S., M. Doktorova, T.R. Molugu, F.A. Heberle, H.L. Scott, B. Dzikovski, M. Nagao, L.R. Stingaciu, R.F. Standaert, F.N. Barrera, J. Katsaras, G. Khelashvili, M.F. Brown, and R. Ashkar, How cholesterol stiffens unsaturated lipid membranes. Proceedings of the National Academy of Sciences, 117(36): p. 21896-21905, 2020.
    107. Tian, C.A. and C.C. Chiu, Importance of hydrophilic groups on modulating the structural, mechanical, and interfacial properties of bilayers: A comparative molecular dynamics study of phosphatidylcholine and ion pair amphiphile membranes. International Journal of Molecular Sciences, 19(6): p. 1552, 2018.
    108. Dimova, R., Recent developments in the field of bending rigidity measurements on membranes. Advances in Colloid and Interface Science, 208: p. 225-234, 2014.
    109. Venable, R.M., F.L.H. Brown, and R.W. Pastor, Mechanical properties of lipid bilayers from molecular dynamics simulation. Chemistry and Physics of Lipids, 192: p. 60-74, 2015.
    110. Doktorova, M., D. Harries, and G. Khelashvili, Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. Physical Chemistry Chemical Physics, 19(25): p. 16806-16818, 2017.
    111. Bruning, B.A., S. Prévost, R. Stehle, R. Steitz, P. Falus, B. Farago, and T. Hellweg, Bilayer undulation dynamics in unilamellar phospholipid vesicles: effect of temperature, cholesterol and trehalose. Biochimica et Biophysica Acta, 1838(10): p. 2412-2419, 2014.
    112. Kucerka, N., J. Pencer, M.-P. Nieh, and J. Katsaras, Influence of cholesterol on the bilayer properties of monounsaturated phosphatidylcholine unilamellar vesicles. The European Physical Journal E Soft Matter, 23(3): p. 247-254, 2007.
    113. Santhosh, P., J. Genova, A. Iglic, V. Kralj-Iglic, and N.P. Ulrih, Influence of cholesterol on bilayer fluidity and size distribution of liposomes. Comptes rendus de l’Académie bulgare des Sciences, 73(7), 2020.
    114. Lakowicz, J.R., Principles of fluorescence spectroscopy. Springer science & business media., 2013.
    115. 余承曄, 膽固醇與溫度效應對類乙醇體陰陽離子液胞的水溶性藥物釋放行為之影響. 成功大學化學工程學系學位論文, 2016.
    116. 唐義立, 類乙醇體陰陽離子液胞的水溶性藥物包覆效率及釋放動力學探討. 成功大學化學工程學系學位論文, 2015.
    117. Varga, I., R. Mészáros, and T. Gilányi, Adsorption of sodium alkyl sulfate homologues at the air/solution interface. The Journal of Physical Chemistry B, 111(25): p. 7160-7168, 2007.
    118. Gilanyi, T., I. Varga, C. Stubenrauch, and R. Mészáros, Adsorption of alkyl trimethylammonium bromides at the air/water interface. Journal of Colloid and Interface Science, 317(2): p. 395-401, 2008.
    119. ACD/ChemSketch (Freeware version): Advanced Chemistry Development, Inc. (http://www.acdlabs.com/resources/freeware/chemsketch/).
    120. Xu, X., M.A. Khan, and D.J. Burgess, Predicting hydrophilic drug encapsulation inside unilamellar liposomes. International Journal of Pharmaceutics, 423(2): p. 410-418, 2012.
    121. Elorza, B., M.A. Elorza, G. Frutos, and J.R. Chantres, Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing extrusion methods: study of drug release. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1153(2): p. 135-142, 1993.
    122. Berger, N., A. Sachse, J. Bender, R. Schubert, and M. Brandl, Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. International Journal of Pharmaceutics, 223(1-2): p. 55-68, 2001.
    123. Yamauchi, M., K. Tsutsumi, M. Abe, Y. Uosaki, M, Nakakura, and N. Aoki, Release of drugs from liposomes varies with particle size. Biological and Pharmaceutical Bulletin, 30(5): p. 963-966, 2007.
    124. 柯政遠, 乙醇體及陰陽體的製備及其包覆/釋放行為之探討. 成功大學化學工程學系學位論文, 2008.
    125. Agnihotri, S.A., K.S. Soppimath, and G.V. Betageri, Controlled release application of multilamellar vesicles: A novel drug delivery approach. Drug Delivery, 17(2): p. 92-101, 2010.
    126. Cagdas, F.M., N. Ertugral, S. Bucak, and N.Z.Atay, Effect of preparation method and cholesterol on drug encapsulation studies by phospholipid liposomes. Pharmaceutical Development and Technology, 16(4): p. 408-414, 2011.
    127. 邱文昱, 陰陽離子液胞包覆油水溶性藥物之行為探討. 成功大學化學工程學系學位論文, 2012.
    128. Men, Y., F. Peng, Y. Tu, J.C.M. van Hest, and D.A. Wilson, Methods for production of uniform small-sized polymersome with rigid membrane. Polymer Chemistry, 7(24): p. 3977-3982, 2016.
    129. Wang, C.W., M.C. Chuang, C.Y. Chang, C.H. Chang, and Y.M. Yang, Stable ethosome-like catanionic vesicles for transdermal hydrophilic drug Delivery with predictable encapsulation efficiency. Journal of Oleo Science, 70(10): p. 1391-1401, 2021.
    130. FL WinLab v4.00 for LS-45/5550B-螢光光譜儀操作手冊.
    131. Huang, C., D. Quinn, Y. Sadovsky, S. Suresh, and K.J. Hsia, Formation and size distribution of self-assembled vesicles. Proceedings of the National Academy of Sciences, 114(11): p. 2910-2915, 2017.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE