研究生: |
徐育婷 Hsu, Yu-Ting |
---|---|
論文名稱: |
研製氧化鋅材料之共振腔增強式金屬-半導體-金屬紫外光檢測器 Design and Fabrication of ZnO-based Resonant Cavity Enhanced Metal-Semiconductor-Metal UV Photodetectors |
指導教授: |
李清庭
Lee, Ching-Ting |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 氧化鋅 、共振腔增強式金屬-半導體-金屬紫外光檢測器 、分佈式布拉格反射鏡 、暗電流 、響應度 |
外文關鍵詞: | ZnO, Resonant Cavity Enhanced Metal-Semiconductor-Metal UV Photodetectors, Distributed Bragg Reflector, Dark Current, Responsivity |
相關次數: | 點閱:138 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以氣相冷凝系統,蒸鍍高品質之本質氧化鋅材料,研製工作波段位於300 nm之氧化鋅材料共振腔增強式結構之金屬-半導體-金屬紫外光檢測器(Resonance Cavity Enhanced Metal-Semiconductor-Metal ultraviolet Photodetectors, RCE MSM UV PDs)。元件結構之設計結合傳統MSM-PDs與法布里-珀羅腔體(Fabry-Perot cavity),利用介電材料氧化鉿(HfO2)與二氧化矽(SiO2)交互堆疊製作出18.5對以及2.5對分佈式布拉格反射鏡(Distributed Bragg Reflector, DBR)做為元件底部與頂部反射鏡,研製出具有單一波段選擇性、高外部量子效益與高靈敏度之紫外光檢測器。
本論文製作並比較有無共振腔結構之光檢測器之元件特性。傳統厚吸收層之MSM-PDs在偏壓5V時,暗電流為22 pA,而氧化鋅厚度為70nm之薄吸收層RCE MSM-PDs則為52 pA。MSM-PDs元件之紫外光-可見光拒斥比為114,而RCE MSM-PDs則可提升至226,而外部量子效益與內部增益之乘積則分別為155% 與113%。
In this study, a novel vapor cooling condensation technique was used to deposit high quality i-ZnO films. And ZnO-based resonant cavity enhanced (RCE) Metal-Semiconductor-Metal (MSM) ultraviolet (UV) photodetectors for operating at wavelength of 300 nm was design and fabricated. We combine traditional MSM-PDs and Fabry-Perot cavity composed of 18.5-pair HfO2/SiO2 Distributed Bragg Reflector (DBR) as the bottom mirror and 2.5-pair DBR as the top one. Such RCE devices benefit from the wavelength selectivity, high external quantum efficiency, and high detectivity
In this thesis, we compared the device properties of traditional MSM- PDs with RCE MSM-PDs. When bias at 5V, the dark current of MSM PDs is 22 pA and the RCE MSM PDs is 52 pA. The UV-visible rejection ratio of 226 and 114 was obtained for the ZnO MSM-PDs with and without RCE structure. The products of quantum efficiency and internal gain of ZnO MSM-PDs with and without RCE structure under a bias voltage 5V at a wavelength of 300 nm and 310 nm is 155% and 113%, respectively.
[1]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T.
Steiner, “Recent progress in processing and properties
of ZnO,” Prog. Mater. Sci., vol. 50, pp. 293–340 (2005).
[2]D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual
Native Shallow Donor in ZnO,” Phys. Rev. Lett., vol.82,
pp.2552-2555 (1999).
[3]A. Janotti and C. G. Van de Walle, “Oxygen vacancies in
ZnO,” Appl. Phys. Lett., vol.87, pp.122102-1-122102-3
(2005).
[4]C. G. Van de Walle, “Hydrogen as a Cause of Doping in
Zinc Oxide,” Phys. Rev. Lett., vol.85, pp.1012-1015
(2000).
[5]W. Water and S. Y. Chu, “Physical and structural
properties of ZnO sputtered films,” Mater. Lett., vol.
55, pp.67-72 (2002).
[6]S. Y. Chu, W. Water, and J. T. Liaw, “Influence of
postdeposition annealing on the properties of ZnO films
prepared by RF magnetron sputtering,” J. Eur. Cera.
Soc., vol. 23, pp. 1593-159 (2003).
[7]L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization
of ZnO UV photoconductors on the 6H-SiC substrate,”
Proc. SPIE, vol. 7603, pp.76031O-1-76031O-8 (2010).
[8]H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H.
Hosono, “UV-detector based on pn-heterojunction diode
composed of transparent oxide semiconductors, p-NiO/n-
ZnO,” Thin Solid Films, vol.445, pp. 317–321 (2003).
[9]L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J.
L. Liu, “Homojunction photodiodes based on Sb-doped p-
type ZnO for ultraviolet detection,” Appl. Phys. Lett.,
vol.88, pp.092103-1-092103-3 (2006).
[10]H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, K. Hane,
and Y. Kashiwaba, “Schottky ultraviolet photodiode
using a ZnO hydrothermally grown single crystal
substrate,” Appl. Phys. Lett., vol.90, pp.121906-1-
121906-3 (2007).
[11]D. C. Oh, T. Suzuki, T. Hanada, T. Yao, H. Makino, and
H. J. Ko, “Photoresponsivity of ZnO Schottky barrier
diodes,” J. Vac. Sci. Technol. B, vol.24, pp.1595-1598
(2006).
[12]K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n
and n-i-p heterostructure ultraviolet sensors: a
comparative study,” J. Appl. Phys., vol.101, pp.114508-
1-114508-5 (2007).
[13]M. Li, N. Chokshi, R. L. DeLeon, G. Tompa, and W. A.
Anderson, “Radio frequency sputtered zinc oxide thin
films with application to metal–semiconductor–metal
photodetectors,” Thin Solid Films, vol.515, pp.7357–
7363 (2007).
[14]S. J. Young, L. W. Ji, S. J. Chang, and Y. K. Su, “ZnO
metal–semiconductor–metal ultraviolet sensors with
various contact electrodes,” J. Cryst. Growth, vol.293,
pp.43–47 (2006).
[15]K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang,
S. Jang, E. Kim and S. Im, “Improved dynamic properties
of ZnO-based photo-transistor with polymer gate
dielectric by ultraviolet treatment,” J. Phys. D: Appl.
Phys., vol.41, pp.1-5 (2008).
[16]X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale
Hexagonal-Patterned Growth of Aligned ZnO Nanorods for
Nano-optoelectronics and Nanosensor Arrays,” Nano
Lett., vol. 4, pp.423-426 (2004).
[17]S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H.
Morkoc¸ X. Zhou, M. Tamargo, and R. R.
Alfano, “Backilluminated GaN/AlGaN heterojunction
ultraviolet photodetector with high internal gain,”
Appl. Phys. Lett., vol.81, pp.4862-4864 (2002).
[18]Y. K. Su, W. C. Cheng, R. W. Chuang, S. H. Hsu, and B.
Y. Chen, “InGaAsN Metal-Semiconductor-Metal
Photodetectors with Transparent Indium Tin Oxide
Schottky Contact,” Jpn. J. Appl. Phys., vol.46, pp.2373-
2376 (2007).
[19]A. Ramam, G. K. Chowdhury, and S. J. Chua, “An approach
to the design of highly selective resonant-cavity-
enhanced photodetectors,” Appl. Phys. Lett., vol.86,
pp.17110-1-17110-3 (2005).
[20]許瑋娟,「以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研
究」,國立中央大學化學研究所,碩士論文(2004)。
[21]M. S. Unlu and S. Strite, “Resont cavity enhanced
photonic devices,” J. Appl. Phys., vol.78, pp.607-617
(1995).
[22]胡峻銘,「無縫膠囊於中藥製劑上的應用」,中國醫藥學院中國藥學研究
所,碩士論文(2003)。
[23]郭慧玲,「永久性染髮劑的氧化反應產物之經皮吸收」,嘉南藥理科技大
學化粧品科技研究所,碩士論文(2009)。
[24]行政院環境保護署,「生物毒性與有害物質參數之相關性研究」(199 7)
[25]杜承恩,「以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究」,
國立中央大學光電科學與工程研究所,碩士論文(2009)。
[26]李正中,「薄膜光學與鍍膜技術」藝軒圖書出版社 (1999)。
[27]A. Yariv, “Quantum electronics, 3rd edition,” Wiley
(1989).
[28]E. Garmire, “Theory of quarter-wave-stack dielectric
mirrors used in a thin Fabry–Perot filter,” Appl. Opt.,
vol. 42, pp.5442-5449 (2003).
[29]M. Sze, D. J. Coleman, and A. Loya, “Current Transport
in Metal-Semiconductor-Metal (MSM) structures,” Solid-
State Electron., vol.14, pp.1209-1215 (1971).
[30]G. Zaccanti and P. Bruscaglioni, “Deviation from the
Lambert-Beer Law in the Transmittance of a Light Beam
Through Diffusing Media: Experimental Results ,” J.
Mod. Opt., vol. 35, pp.229 - 242 (1988).
[31]J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky,
and J. Narayan, “Excitonic structure and absorption
coefficient measurements of ZnO single crystal
epitaxial films deposited by pulsed laser deposition,”
J. Appl. Phys., vol. 85, pp. 7884-7887 (1999).
[32]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R.
D. Dupuis, and J. C. Campbell, “Comprehensive
characterization of metal–semiconductor–metal
ultraviolet photodetectors fabricated on single-crystal
GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160 (1998).
[33]E. Munoz, E. Monroy, J. A. Garrido, I. Izpura, F. J.
Sanchez, M. A. Sanchez-Garcı, E. Calleja, B. Beaumont,
and P. Gibart, “Photoconductor gain mechanisms in GaN
ultraviolet detectors,” Appl. Phys. Lett., vol. 71, pp.
870-872, (1997).
[34]O. Katz, V. Garber, B. Meyler, G. Bahir, and J.
Salzman, “Gain mechanism in GaN Schottky ultraviolet
detectors,” Appl. Phys. Lett., vol. 79, pp. 1417-1419,
(2001).
[35]M. S. lhiii and S. Strite, “Resonant cavity enhanced
photonic devices,” J. Appl. Phys., vol. 78, pp. 607-639
(1995).
[36]R. W. Mao, C. S. Tsai, J. Z. Yu, and Q. M.
Wang, “Narrow line-width resonant cavity enhanced
photodetectors operating at 1.55 lm,” Opt. Commun.,
vol.281, pp.1582–1587 (2008).
[37]A. Ramam, G. K. Chowdhury, and S. J. Chua, “An approach
to the design of highly selective resonant-cavity-
enhanced photodetectors,” Appl. Phys. Lett, vol. 86,
pp.171104-1-171104-3 (2005).
[38]S. Kasukabe, S. Yatsuya, and R. Uyeda, “Ultrafine metal
particles formed by gas-evaporation technique. II.
Crystal habits of magnesium, manganese, beryllium and
tellurium,” Jpn. J. Appl. Phys., vol.13, pp.1714-1721
(1974).
[39]S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K.
Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M.
Tsai, “GaN metal-semiconductor-metal photodetectors
with low-temperature-GaN cap layers and ITO metal
contacts,” IEEE Electron Dev. Lett., vol. 24, pp. 212-
214 (2003).
[40]A. M. Green, D. G. Gevaux, C. Roberts, and C. C.
Phillips, “Resonant-cavity-enhanced photodetectors and
LEDs in the mid-infrared,” Physica E, vol.20, pp.531-
535 (2004).
[41]E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S.
Y. Lee, “Effect of the variation of film thickness on
the structural and optical properties of ZnO thin films
deposited on sapphire substrate using PLD,” Appl. Surf.
Sci., vol.186, pp.474-476 (2002).
[42]T. P. Rao and M. C. Santhoshkumar, “Effect of thickness
on structural, optical and electrical properties of
nanostructured ZnO thin films by spray pyrolysis,”
Appl. Surf. Sci., vol.255, pp.4579-4584 (2009).
[43]M. Yonemaru, A. Kikuch, and K. Kishino, “Improved
Responsivity of AlGaN-Based Resonant Cavity-Enhanced UV
Photodetectors Grown on Sapphire by RF-MBE,” Phys.
Stat. Sol. (a), vol.192, pp.292-295 (2002).