簡易檢索 / 詳目顯示

研究生: 徐育婷
Hsu, Yu-Ting
論文名稱: 研製氧化鋅材料之共振腔增強式金屬-半導體-金屬紫外光檢測器
Design and Fabrication of ZnO-based Resonant Cavity Enhanced Metal-Semiconductor-Metal UV Photodetectors
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 氧化鋅共振腔增強式金屬-半導體-金屬紫外光檢測器分佈式布拉格反射鏡暗電流響應度
外文關鍵詞: ZnO, Resonant Cavity Enhanced Metal-Semiconductor-Metal UV Photodetectors, Distributed Bragg Reflector, Dark Current, Responsivity
相關次數: 點閱:138下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氣相冷凝系統,蒸鍍高品質之本質氧化鋅材料,研製工作波段位於300 nm之氧化鋅材料共振腔增強式結構之金屬-半導體-金屬紫外光檢測器(Resonance Cavity Enhanced Metal-Semiconductor-Metal ultraviolet Photodetectors, RCE MSM UV PDs)。元件結構之設計結合傳統MSM-PDs與法布里-珀羅腔體(Fabry-Perot cavity),利用介電材料氧化鉿(HfO2)與二氧化矽(SiO2)交互堆疊製作出18.5對以及2.5對分佈式布拉格反射鏡(Distributed Bragg Reflector, DBR)做為元件底部與頂部反射鏡,研製出具有單一波段選擇性、高外部量子效益與高靈敏度之紫外光檢測器。
    本論文製作並比較有無共振腔結構之光檢測器之元件特性。傳統厚吸收層之MSM-PDs在偏壓5V時,暗電流為22 pA,而氧化鋅厚度為70nm之薄吸收層RCE MSM-PDs則為52 pA。MSM-PDs元件之紫外光-可見光拒斥比為114,而RCE MSM-PDs則可提升至226,而外部量子效益與內部增益之乘積則分別為155% 與113%。

    In this study, a novel vapor cooling condensation technique was used to deposit high quality i-ZnO films. And ZnO-based resonant cavity enhanced (RCE) Metal-Semiconductor-Metal (MSM) ultraviolet (UV) photodetectors for operating at wavelength of 300 nm was design and fabricated. We combine traditional MSM-PDs and Fabry-Perot cavity composed of 18.5-pair HfO2/SiO2 Distributed Bragg Reflector (DBR) as the bottom mirror and 2.5-pair DBR as the top one. Such RCE devices benefit from the wavelength selectivity, high external quantum efficiency, and high detectivity
    In this thesis, we compared the device properties of traditional MSM- PDs with RCE MSM-PDs. When bias at 5V, the dark current of MSM PDs is 22 pA and the RCE MSM PDs is 52 pA. The UV-visible rejection ratio of 226 and 114 was obtained for the ZnO MSM-PDs with and without RCE structure. The products of quantum efficiency and internal gain of ZnO MSM-PDs with and without RCE structure under a bias voltage 5V at a wavelength of 300 nm and 310 nm is 155% and 113%, respectively.

    摘要…………………………………………………………………………………I Abstract…………………………………………………………………………………………………………………………………III 致謝…………………………………………………………………………………V 目錄…………………………………………………………………………………VI 表目錄………………………………………………………………………………IX 圖目錄………………………………………………………………………………XI 第一章 簡介 / 1 1.1 氧化鋅材料…………………………………………………………………1 1.2 紫外光檢測器………………………………………………………………3 1.3 研究動機與目的……………………………………………………………4 第二章 原理 / 6 2.1 法布里-珀羅共振腔原理…………………………………………………6 2.2 分佈式布拉格反射鏡……………………………………………………7 2.2-1 反射率與截止頻寬…………………………………………………7 2.2-2 反射鏡穿透深度與等效腔長………………………………………8 2.3 金屬-半導體-金屬紫外光檢測器工作原理與元件特性…………………9 2.3-1 工作原理……………………………………………………………9 2.3-2 半導體材料厚度與吸收效率………………………………………11 2.3-3 光檢測器響應特性、外部量子效率與內部增益…………………13 2.4 共振腔增強式金屬-半導體-金屬紫外光檢測器工作原理與元件 特性………………………………………………………………………17 2.4-1 反射鏡反射率與外部量子效率……………………………………17 2.4-2 共振腔長與響應特性………………………………………………19 2.4-3 光檢測器結構設計…………………………………………………20 第三章 製程設備與元件製作 / 22 3.1 光學監控系統……………………………………………………………22 3.2 氣相冷凝系統……………………………………………………………23 3.3 金屬-半導體-金屬紫外光檢測器元件製作……………………………24 3.3-1 定義元件主動區與元件隔離………………………………………25 3.3-2 以氣相冷凝法蒸鍍氧化鋅吸收層…………………………………26 3.3-3 定義蕭特基接觸之指叉狀金屬電極………………………………27 3.4 共振增強式金屬-半導體-金屬紫外光檢測器元件製作………………29 3.4-1 蒸鍍底部分佈式布拉格反射鏡……………………………………30 3.4-2 蒸鍍填充層定義共頻率……………………………………………30 3.4-3 定義元件主動區與元件隔離………………………………………30 3.4-4 以氣相冷凝法蒸鍍氧化鋅吸收層…………………………………31 3.4-5 定義蕭特基接觸之指叉狀金屬電極………………………………32 3.4-6 定義頂部分佈式布拉格反射鏡……………………………………33 第四章 模擬測試與量測結果 / 37 4.1 橢圓偏光儀量測……………………………………………………………37 4.2 IMD4.1光學軟體模擬與分光光譜儀量測…………………………………38 4.2-1 分佈式布拉格反射鏡光學模擬與量測……………………………39 4.2-2 共振腔增強式金屬-半導體-金屬紫外光檢測器光學模擬與 量測…………………………………………………………………41 4.3 元件特性量測結果…………………………………………………………42 4.3-1 暗電流………………………………………………………………44 4.3-2 響應特性與紫外光-可見光拒斥比………………………………46 4.3-3 外部量子效率與內部增益之乘積…………………………………51   第五章 結論與未來工作 / 56 5.1 結論…………………………………………………………………………56 5.2 未來工作……………………………………………………………………57 參考文獻…………………………………………………………………………58

    [1]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T.
    Steiner, “Recent progress in processing and properties
    of ZnO,” Prog. Mater. Sci., vol. 50, pp. 293–340 (2005).
    [2]D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual
    Native Shallow Donor in ZnO,” Phys. Rev. Lett., vol.82,
    pp.2552-2555 (1999).
    [3]A. Janotti and C. G. Van de Walle, “Oxygen vacancies in
    ZnO,” Appl. Phys. Lett., vol.87, pp.122102-1-122102-3
    (2005).
    [4]C. G. Van de Walle, “Hydrogen as a Cause of Doping in
    Zinc Oxide,” Phys. Rev. Lett., vol.85, pp.1012-1015
    (2000).
    [5]W. Water and S. Y. Chu, “Physical and structural
    properties of ZnO sputtered films,” Mater. Lett., vol.
    55, pp.67-72 (2002).
    [6]S. Y. Chu, W. Water, and J. T. Liaw, “Influence of
    postdeposition annealing on the properties of ZnO films
    prepared by RF magnetron sputtering,” J. Eur. Cera.
    Soc., vol. 23, pp. 1593-159 (2003).
    [7]L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization
    of ZnO UV photoconductors on the 6H-SiC substrate,”
    Proc. SPIE, vol. 7603, pp.76031O-1-76031O-8 (2010).
    [8]H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H.
    Hosono, “UV-detector based on pn-heterojunction diode
    composed of transparent oxide semiconductors, p-NiO/n-
    ZnO,” Thin Solid Films, vol.445, pp. 317–321 (2003).
    [9]L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J.
    L. Liu, “Homojunction photodiodes based on Sb-doped p-
    type ZnO for ultraviolet detection,” Appl. Phys. Lett.,
    vol.88, pp.092103-1-092103-3 (2006).
    [10]H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, K. Hane,
    and Y. Kashiwaba, “Schottky ultraviolet photodiode
    using a ZnO hydrothermally grown single crystal
    substrate,” Appl. Phys. Lett., vol.90, pp.121906-1-
    121906-3 (2007).
    [11]D. C. Oh, T. Suzuki, T. Hanada, T. Yao, H. Makino, and
    H. J. Ko, “Photoresponsivity of ZnO Schottky barrier
    diodes,” J. Vac. Sci. Technol. B, vol.24, pp.1595-1598
    (2006).
    [12]K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n
    and n-i-p heterostructure ultraviolet sensors: a
    comparative study,” J. Appl. Phys., vol.101, pp.114508-
    1-114508-5 (2007).
    [13]M. Li, N. Chokshi, R. L. DeLeon, G. Tompa, and W. A.
    Anderson, “Radio frequency sputtered zinc oxide thin
    films with application to metal–semiconductor–metal
    photodetectors,” Thin Solid Films, vol.515, pp.7357–
    7363 (2007).
    [14]S. J. Young, L. W. Ji, S. J. Chang, and Y. K. Su, “ZnO
    metal–semiconductor–metal ultraviolet sensors with
    various contact electrodes,” J. Cryst. Growth, vol.293,
    pp.43–47 (2006).
    [15]K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang,
    S. Jang, E. Kim and S. Im, “Improved dynamic properties
    of ZnO-based photo-transistor with polymer gate
    dielectric by ultraviolet treatment,” J. Phys. D: Appl.
    Phys., vol.41, pp.1-5 (2008).
    [16]X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale
    Hexagonal-Patterned Growth of Aligned ZnO Nanorods for
    Nano-optoelectronics and Nanosensor Arrays,” Nano
    Lett., vol. 4, pp.423-426 (2004).
    [17]S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H.
    Morkoc¸ X. Zhou, M. Tamargo, and R. R.
    Alfano, “Backilluminated GaN/AlGaN heterojunction
    ultraviolet photodetector with high internal gain,”
    Appl. Phys. Lett., vol.81, pp.4862-4864 (2002).
    [18]Y. K. Su, W. C. Cheng, R. W. Chuang, S. H. Hsu, and B.
    Y. Chen, “InGaAsN Metal-Semiconductor-Metal
    Photodetectors with Transparent Indium Tin Oxide
    Schottky Contact,” Jpn. J. Appl. Phys., vol.46, pp.2373-
    2376 (2007).
    [19]A. Ramam, G. K. Chowdhury, and S. J. Chua, “An approach
    to the design of highly selective resonant-cavity-
    enhanced photodetectors,” Appl. Phys. Lett., vol.86,
    pp.17110-1-17110-3 (2005).
    [20]許瑋娟,「以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研
    究」,國立中央大學化學研究所,碩士論文(2004)。
    [21]M. S. Unlu and S. Strite, “Resont cavity enhanced
    photonic devices,” J. Appl. Phys., vol.78, pp.607-617
    (1995).
    [22]胡峻銘,「無縫膠囊於中藥製劑上的應用」,中國醫藥學院中國藥學研究
    所,碩士論文(2003)。
    [23]郭慧玲,「永久性染髮劑的氧化反應產物之經皮吸收」,嘉南藥理科技大
    學化粧品科技研究所,碩士論文(2009)。
    [24]行政院環境保護署,「生物毒性與有害物質參數之相關性研究」(199 7)
    [25]杜承恩,「以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究」,
    國立中央大學光電科學與工程研究所,碩士論文(2009)。
    [26]李正中,「薄膜光學與鍍膜技術」藝軒圖書出版社 (1999)。
    [27]A. Yariv, “Quantum electronics, 3rd edition,” Wiley
    (1989).
    [28]E. Garmire, “Theory of quarter-wave-stack dielectric
    mirrors used in a thin Fabry–Perot filter,” Appl. Opt.,
    vol. 42, pp.5442-5449 (2003).
    [29]M. Sze, D. J. Coleman, and A. Loya, “Current Transport
    in Metal-Semiconductor-Metal (MSM) structures,” Solid-
    State Electron., vol.14, pp.1209-1215 (1971).
    [30]G. Zaccanti and P. Bruscaglioni, “Deviation from the
    Lambert-Beer Law in the Transmittance of a Light Beam
    Through Diffusing Media: Experimental Results ,” J.
    Mod. Opt., vol. 35, pp.229 - 242 (1988).
    [31]J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky,
    and J. Narayan, “Excitonic structure and absorption
    coefficient measurements of ZnO single crystal
    epitaxial films deposited by pulsed laser deposition,”
    J. Appl. Phys., vol. 85, pp. 7884-7887 (1999).
    [32]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R.
    D. Dupuis, and J. C. Campbell, “Comprehensive
    characterization of metal–semiconductor–metal
    ultraviolet photodetectors fabricated on single-crystal
    GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160 (1998).
    [33]E. Munoz, E. Monroy, J. A. Garrido, I. Izpura, F. J.
    Sanchez, M. A. Sanchez-Garcı, E. Calleja, B. Beaumont,
    and P. Gibart, “Photoconductor gain mechanisms in GaN
    ultraviolet detectors,” Appl. Phys. Lett., vol. 71, pp.
    870-872, (1997).
    [34]O. Katz, V. Garber, B. Meyler, G. Bahir, and J.
    Salzman, “Gain mechanism in GaN Schottky ultraviolet
    detectors,” Appl. Phys. Lett., vol. 79, pp. 1417-1419,
    (2001).
    [35]M. S. lhiii and S. Strite, “Resonant cavity enhanced
    photonic devices,” J. Appl. Phys., vol. 78, pp. 607-639
    (1995).
    [36]R. W. Mao, C. S. Tsai, J. Z. Yu, and Q. M.
    Wang, “Narrow line-width resonant cavity enhanced
    photodetectors operating at 1.55 lm,” Opt. Commun.,
    vol.281, pp.1582–1587 (2008).
    [37]A. Ramam, G. K. Chowdhury, and S. J. Chua, “An approach
    to the design of highly selective resonant-cavity-
    enhanced photodetectors,” Appl. Phys. Lett, vol. 86,
    pp.171104-1-171104-3 (2005).
    [38]S. Kasukabe, S. Yatsuya, and R. Uyeda, “Ultrafine metal
    particles formed by gas-evaporation technique. II.
    Crystal habits of magnesium, manganese, beryllium and
    tellurium,” Jpn. J. Appl. Phys., vol.13, pp.1714-1721
    (1974).
    [39]S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K.
    Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M.
    Tsai, “GaN metal-semiconductor-metal photodetectors
    with low-temperature-GaN cap layers and ITO metal
    contacts,” IEEE Electron Dev. Lett., vol. 24, pp. 212-
    214 (2003).
    [40]A. M. Green, D. G. Gevaux, C. Roberts, and C. C.
    Phillips, “Resonant-cavity-enhanced photodetectors and
    LEDs in the mid-infrared,” Physica E, vol.20, pp.531-
    535 (2004).
    [41]E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S.
    Y. Lee, “Effect of the variation of film thickness on
    the structural and optical properties of ZnO thin films
    deposited on sapphire substrate using PLD,” Appl. Surf.
    Sci., vol.186, pp.474-476 (2002).
    [42]T. P. Rao and M. C. Santhoshkumar, “Effect of thickness
    on structural, optical and electrical properties of
    nanostructured ZnO thin films by spray pyrolysis,”
    Appl. Surf. Sci., vol.255, pp.4579-4584 (2009).
    [43]M. Yonemaru, A. Kikuch, and K. Kishino, “Improved
    Responsivity of AlGaN-Based Resonant Cavity-Enhanced UV
    Photodetectors Grown on Sapphire by RF-MBE,” Phys.
    Stat. Sol. (a), vol.192, pp.292-295 (2002).

    下載圖示 校內:2011-05-28公開
    校外:2013-05-28公開
    QR CODE