簡易檢索 / 詳目顯示

研究生: 羅光宗
LO, Kwang-Tsung
論文名稱: 研究DROJ2在蛻皮激素訊息傳遞所調節的果蠅卵子生成中的作用
Investigation of the role of DROJ2 in Ecdysone signaling mediated Drosophila oogenesis
指導教授: 張純純
Jang, Chun-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: DROJ2蛻皮激素受體蛻皮激素反應元件
外文關鍵詞: droj2, Ecdysone receptor, EcRElacZ
相關次數: 點閱:99下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類的生命週期中,類固醇賀爾蒙決定一個個體發育至各種特定階段,然而其分子機制仍然未明確,為了了解類固醇賀爾蒙如何調節發育,我們使用果蠅的邊境細胞作為實驗模型進行研究,這些細胞會因蛻皮激素的調控進行遷移。除此之外,透過僅表現同型合子droj2的突變在邊境細胞的實驗中,也確認只有droj2的突變情況下,也會導致邊境細胞的移動缺陷。關於droj2,它是人類熱休克蛋白40 (HSP40)的同源基因,其功能是為避免不正常摺疊蛋白質的聚集以及將這些不正常的折疊蛋白恢復成適合的結構,而其他系統的HSP40也負責賀爾蒙受器的成熟。雖然果蠅中DROJ2與類固醇賀爾蒙受器的關係還不是很清楚,但這些研究,也許暗示了DROJ2與蛻皮激素受體是有交互關係,為了驗證這個假說,利用蛻皮激素反應元件所調控的lacZ (EcRElacZ)基因表現作為報告者基因,發現droj2的突變會在Tai(△B)大量表現下,使EcRElacZ的表現也會加強。而我們也透過建構重組蛋白GST-DROJ2以及蛻皮激素受體:His-tag-EcR.A、His-tag-EcR.B1、His-tag-EcR.A△HBD、His-tag-EcR.B1△HBD以及His-tag-EcR△N,透過GST-pull down assay,來了解DROJ2跟蛻皮激素在生化上的交互關係。在未來透過這樣的研究知道DROJ2跟蛻皮激素受體是如何調節蛻皮激素訊息的傳遞,將會提供去理解卵子生成又或者是動物發育的過程。

    DROJ2 is a heat shock protein 40 (HSP40)in Drosophila. DROJ2 function is critical in protein stability, cell physiology including oogenesis and cell migration. However, the mechanism is unclear for DROJ2 for collective cell migration. Previous reports show that HSP40 control the stability of steroid hormone receptor. Interestingly, the detachment timing of border cell migration is regulated by ecdysone, the only known steroid hormone in Drosophila. In previous work, we reported that homozygous mutant clones of droj2 caused the border cell migration defect. Thus, we hypothesized that DROJ2 regulates border cell migration via control the stability of ecdysone receptor to modulate the ecdysone signaling level. To assess this possibility, EcRElacZ, a transgenic reporter of ecdysone reporter, was applied to assess the effect of droj2. The results indicate that EcRElacZ was increased under the droj2GS5242 genetic background. To explore the physical interaction between the ecdysone receptor and DROJ2, the recombinant protein, GST-DROJ2, was generated to perform GST pull down assay. In addition, full-length of ecdysone receptors, His-tag EcR.A and His-tag EcR.B1, were also constructed for protein/protein interaction. I also constructed three truncated forms of the ecdysone receptor, His-tag EcR.A△HBD, His-tag EcR.B1△HBD, and His-tag EcR△N, for analyzing domain requirement for EcRA and DROJ2. Detail analysis will be presented in main results.

    中文摘要I 英文摘要II 誌謝V 目錄VI 圖目錄IX 附圖目錄X 縮寫表XI 一、研究背景1 1-1 droj2的功能1 1-2 蛻皮激素調控邊境細胞遷移3 1-3 Taiman調控蛻皮激素訊號的活性,進而調控邊境細胞的遷移5 1-4 研究目的6 二、材料與方法7 2-1 從果蠅中萃取Genomic DNA7 2-2 Polymerase chain reaction (PCR)8 2-3 質體DNA萃取10 2-4 質體建構11 2-5 細菌轉型實驗13 2-6 DNA clean up實驗13 2-7 蛋白質誘導14 2-8 GST-pull down assay實驗14 2-9 His-tag 蛋白質純化15 2-10 SDS-PAGE 分析16 2-11 以Coomassie blue 染SDS-PAGE16 2-12 果蠅株以及其遺傳資訊17 2-13 果蠅卵巢解剖17 2-14 果蠅卵巢免疫組織化學染色18 2-15 建構轉基因果蠅18 2-16 蛻皮激素訊號觀測in vivo19 2-17 邊境細胞移動的量化20 三、結果21 3-1 droj2在ecdysone signaling 中扮演的角色21 3-2 對droj2 編碼序列進行TA 質體建構22 3-3對蛻皮激素受體編碼序列進行TA 質體建構23 3-4 重組蛋白GST-DROJ2以及GST的誘導24 3-5 重組蛋白His-tag EcR.A以及His-tag EcR.B1的誘導26 3-6 以果蠅幼蟲為誘導系統,誘導EcR.A以及EcR.B127 3-7 對截去部分功能域的蛻皮激素受體序列進行TA 質體建構28 3-8 對截去部分功能域的蛻皮激素受體進行蛋白質誘導30 3-9 以His-tag EcR.B1△HBD對DROJ2進行pull down assay32 3-10 建立UAST-droj2-RA的轉基因果蠅33 四、討論34 4-1 DROJ2調控蛻皮激素訊號進而調控邊境細胞34 4-2 重組蛋白質的誘導35 4-3 DROJ2與蛻皮激素受體的交互作用36 4-4 結論37 參考文獻38 圖表44 附錄85

    余惠穎,分析果蠅的群體細胞遷移中DROJ2的功能,國立成功大學生物科技與產業科學系碩士論文,2018。
    Bai, J., Uehara, Y. and Montell, D. J. Regulation of Invasive Cell Behavior by Taiman, a Drosophila Protein Related to AIB1, a Steroid Receptor Coactivator Amplified in Breast Cancer. Cell 103, 1047-1058, 2000.
    Bastock, R. and St Johnston, D. Drosophila oogenesis. Current Biology 18, R1082-R1087, 2008.
    Beccari, S., Teixeira, L. and Rorth, P. The jak/stat pathway is required for border cell migration during Drosophila oogenesis. Mechanisms of Development 111, 115-123, 2002.
    Busson, D. and Pret, A. M. GAL4/UAS targeted gene expression for studying Drosophila Hedgehog signaling. Methods in Molecular Biology 397, 161-201, 2007.
    Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. and Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130, 271-284, 2003.
    Cobreros, L., Fernández-Miñán, A., Luque, C.M., González-Reyes, A. and Martín-Bermudo, M.D. A role for the chaperone Hsp70 in the regulation of border cell migration in the Drosophila ovary. Mechanisms of Development 125, 1048-1058, 2008.
    Echeverria, P. C. and Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochimica et Biophysica Acta-Molecular Cell Research 1803, 641-649, 2010.
    Fang, Y., Fliss, A. E., Rao, J. and Caplan, A. J. SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Molecular and Cellular Biology 18, 3727-3734, 1998.
    Ferrandon, D., Imler, J. L., Hetru, C. and Hoffmann, J. A. The Drosophila systemic immune response: Sensing and signalling during bacterial and fungal infections. Nature Reviews Immunology 7, 862-874, 2007.
    Golic, K. G. and Lindquist, S. The flp recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499-509, 1989.
    Hansen, L. H., Knudsen, S. and Sorensen, S. J. The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Current Microbiology 36, 341-347, 1998.
    Hernandez, M. P., Chadli, A. and Toft, D. O. Hsp40 binding is the first step in the hsp90 chaperoning pathway for the progesterone receptor. The Journal of Biological Chemistry 277, 11873-11881, 2002.
    Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. and Stüber, D. Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent. Nature Biotechnology 6, 1321-1325, 1988.
    Jang, A. C., Chang, Y. C., Bai, J. and Montell, D. Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nature Cell Biology 11, 569-579, 2009.
    Johnson, J. L. and Craig, E. A. A Role for the Hsp40 Ydj1 in Repression of Basal Steroid Receptor Activity in Yeast. Molecular and Cellular Biology 20, 3027-3036, 2000.
    Kampinga, H. H. and Craig, E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology 11, 579-592, 2010.
    Kelley, W. L. The J domain family and the recruitment of chaperone power. Trends in Biochemical Sciences 23, 222-227, 1998.
    King, R. C. The meiotic behavior of the drosophila oocyte. International Review of Cytology 28, 125-168, 1970.
    Koelle, M. R., Talbot, W. S., Segraves, W. A., Bender, M. T., Cherbas, P. and Hogness, D. S. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59-77, 1991.
    Konig, A., Yatsenko, A. S., Weiss, M. and Shcherbata, H. R. Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation. European Molecular Biology Organization 30, 1549-1562, 2011.
    Lechuga, A., Berjón-Otero, M., Salas, M. and Redrejo-Rodríguez, M. Analysis of Direct Interaction between Viral DNA-binding Proteins by Protein Pull-down Co-immunoprecipitation Assay. Bio-Protocol 8, e2678, 2018.
    Leo, C. and Chen, J. D. The SRC family of nuclear receptor coactivators. Gene 245, 1-11, 2000.
    Lin, T. H., Yeh, T. H., Wang, T. W. and Yu, J. Y. The hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary. Genetics 198, 1087-1099, 2014.
    Marchler, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C. and Gonzales, N. R. Cdd/sparcle: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research 45, 200-203, 2017.
    Momiuchi, Y., Kumada, K., Kuraishi, T., Takagaki, T., Aigaki, T., Oshima, Y. and Kurata, S. The Role of the Phylogenetically Conserved Cochaperone Protein Droj2/DNAJA3 in NF-κB Signaling. Journal of Biological Chemistry 290, 23816-23825, 2015.
    Montell, D. J., Rorth, P. and Spradling, A. C. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila CEBP. Cell 71, 51-62, 1992.
    Montell, D. Border-cell migration: the race is on. Nature Reviews Molecular Cell Biology 4, 13-24, 2003.
    Moraes, A. M., Jorge, S. A., Astray, R. M., Suazo, C. A., Calderón Riquelme, C. E., Augusto, E. F., Tonso, A., Pamboukian, M. M., Piccoli, R. A., Barral, M. F. and Pereira, C. A. Drosophila melanogaster S2 cells for expression of heterologous genes: From gene cloning to bioprocess development. Biotechnology Advances 30, 613-628, 2012.
    Nakayama, M., Ishibashi, T., Ishikawa, H. O., Sato, H., Usui, T., Okuda, T., Yashiro, H., Ishikawa, H., Taikou, Y., Minanmi, A., Kato, K., Taki, M., Aigaki, T., Gunji, W., Ohtsu, M., Murakami, Y., Tanuma, S., Tsuboi, A., Adachi, M., M., Kuroda, J., Sasamura, T., Yamakawa, T. and Matsuno, K. A gain-of-function screen to identify genes that reduce lifespan in the adult of Drosophila melanogaster. BioMed Central Genetics 15, 46, 2014.
    Nielsen, K. H. Protein expression-yeast. Methods in Enzymology 536, 133-147, 2014.
    Niewiadomska, P., Godt, D. and Tepass, U. De-cadherin is required for intercellular motility during Drosophila oogenesis. The Journal of Biological Chemistry 144, 533-547, 1999.
    Onate, S. A., Tsai, S. Y., Tsai, M. J. and O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354-1357, 1995.
    Pratt, W. B., Hutchison, K. A. and Scherrer, L. C. Steroid receptor folding by heat-shock proteins and composition of the receptor heterocomplex. Trends in Endocrinology and Metabolism 3, 326-333, 1992.
    Pratt, W. B. and Toft, D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrine Reviews 18, 306-360, 1997.
    Rajan, V. B., D'Silva, P. Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Functional and Integrative Genomics 9, 433-446, 2009.
    Ren, L., Chang, E., Makky, K., Haas, A. L., Kaboord, B. and Walid Qoronfleh, M. Glutathione S-transferase pull-down assays using dehydrated immobilized glutathione resin. Analytical Biochemistry 322, 164-169, 2003.
    Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G. M., Weigmann, K., Milan, M., Benes, V. and Ansorge, W. Systematic gain-of-function genetics in Drosophila. Development 125, 1049-1057, 1998.
    Rorth, P., Szabo, K. and Texido, G. The level of c/ebp protein is critical for cell migration during drosophila oogenesis and is tightly controlled by regulated degradation. Molecular Cell 6, 23-30, 2000.
    Rorth, P. Initiating and guiding migration: lessons from border cells. Trends in Cell Biology 12, 325-331, 2002.
    Rosano, G. L. and Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology 5, 172, 2014.
    Schopf, F., Biebl, M. and Buchner, J. The HSP90 chaperone machinery. Nature Reviews Molecular Cell Biology 18, 345-360, 2017.
    Schwartz, M. B., Kelly, T. J., Woods, C. W. and Imberski, R. B. Ecdysteroid fluctuations in adult Drosophila melanogaster caused by elimination of pupal reserves and synthesis by early vitellogenic ovarian follicles. Insect Biochemistry 19, 243-249, 1989.
    Silver, D. L. and Montell, D. J. Paracrine signaling through the jak/stat pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831-841, 2001.
    Silver, D. L., Geisbrecht, E. R. and Montell, D. J. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 132, 3483-3492, 2005.
    Smith, D. F. and Toft, D. O. Minireview: The Intersection of Steroid Receptors with Molecular Chaperones: Observations and Questions. Molecular Endocrinology 22, 2229-2240, 2008.
    Starz-Gaiano, M., Melani, M., Wang, X., Meinhardt, H. and Montell, D. J. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Developmental Cell 14, 726-738, 2008.
    Venken, K. J. and Bellen, H. J. Transgenesis upgrades for Drosophila melanogaster. Development 134, 3571-3584, 2007.
    Wang, Y. J. and Brock, H. W. Polyhomeotic stably associates with molecular chaperones hsc4 and droj2 in Drosophila kc1 cells. Developmental Biology 262, 350-360, 2003.
    Wang, C. W. Explore the roles of genes involved in Taiman-mediated Drosophila oogenesis. Master thesis. Retrieved from National Cheng Kung University of Institute of Biotechnology. 2017.
    White, K. P., Hurban, P., Watanabe, T. and Hogness, D. S. Coordination of Drosophila metamorphosis by two ecdysone-induced nuclear receptors. Science 276, 114-117, 1997.
    Xi, R., McGregor, J. R. and Harrison, D. A. A gradient of JAK pathway activity patterns the anterior-posterior axis of the follicular epithelium. Developmental Cell 4, 167-177, 2003.
    Yang, Z., Zhang, L., Zhang, Y., Zhang, T., Feng, Y., Lu, X., Lan, W., Wang, J., Wu, H., Cao, C. and Wang, X. Highly efficient production of soluble proteins from insoluble inclusion bodies by a two-step-denaturing and refolding method. PLoS One 6, e22981, 2011.
    York, B. and O'Malley, B. W. Steroid receptor coactivator (SRC) family: masters of systems biology. Journal of Biological Chemistry 285, 38743-38750, 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE