簡易檢索 / 詳目顯示

研究生: 黃郁文
Huang, Yu-Wen
論文名稱: 深度學習與電腦視覺在無人機入侵防禦中的應用研究
Application Research of Deep Learning and Computer Vision in Unmanned Aerial Vehicle Intrusion Defense
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 62
中文關鍵詞: 深度強化學習獎勵函數視覺辨識對抗SACAirsim
外文關鍵詞: Deep Reinforcement Learning, Reward Function, Visual, Recognition, Counteraction, SAC, Airsim
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人機在現代戰場戰術應用相當廣泛,在偵蒐及打擊等層面都具有便利、性價比高等優點,搭載人工智慧的無人機系統更是未來戰爭中不可或缺的部份。然而無人機不僅可以作為進攻手段,亦可配合、搭載不同感測器作為防禦性武器使用,本文第一部份利用虛幻引擎以及Airsim的物理模型搭建任務場景,以深度強化學習網路SAC(soft-actor-critic)演算法各別訓練進攻用無人機以及防守用無人機,使其在相互競爭中學習動作策略。第二部分將深度強化學習結合視覺辨識方法,利用影像以及深度感測器數值資料訓練深度強化學習網路SAC,使其能夠自動追蹤敵方無人機,並且鎖定、撞擊以達成防禦任務。

    This purpose of this paper focus on the integration of deep reinforcement learning (DRL) in one-on-one unmanned aerial vehicle (UAV) combat scenarios. We introduce a Soft Actor-Critic (SAC) framework for UAVs to learn tracking, evasion, and circumvention strategies. This equips UAVs to effectively engage in adversarial encounters. This paper also presents a novel approach merging image recognition and DRL for UAV pursuit and guidance. By utilizing image and depth sensors, the UAV calculates relative positions and employs DRL to pursue and intercept enemy drones, achieving a commendable interception rate. Addressing reward function design, this paper emphasizes calibrated incentives. By refining overly optimistic reward functions, we achieve a significant increase in draw ratios and a more balanced attack-defense win ratio.

    論文摘要 i ABSTRACT ii 誌謝 xv 目錄 xvi 表目錄 xviii 圖目錄 xviii 符號表 xxi 第1章 緒論 1 1.1 研究動機與目標 1 1.2 研究背景 2 1.3 本文架構 4 第2章 深度強化學習 5 2.1 任務動作描述 5 2.2 強化學習方法 6 2.2.1 傳統強化學習方法 8 2.2.2 深度強化學習方法 11 第3章 無人機對抗深度強化學習 16 3.1 模擬環境 16 3.1.1 虛幻引擎以及Airsim軟體介紹 16 3.1.2 導入無人機模型、地形圖建模 17 3.2 實驗架構 19 3.3 獎勵函數設計 24 3.4 實驗與討論 27 第4章 深度強化學習結合視覺辨識 41 4.1 視覺雲台追蹤導引 41 4.2 實驗架構 47 4.3 獎勵函數設定 52 4.4 實驗與討論 54 第5章 結論與未來展望 60 參考文獻 61

    Alsanad, H., Sadik, A., Ucan, O., Ilyas, M., & Bayat, O. (2022). YOLO-V3 based real-time drone detection algorithm. Multimedia Tools and Applications, 81, 1-14. https://doi.org/10.1007/s11042-022-12939-4
    Guo, H. F., Hou, M. Y., Zhang, Q. J., & Tang, C. L. (2017). UCAV robust maneuver decision based on statistics principle. Binggong Xuebao/Acta Armamentarii, 38, 160-167. https://doi.org/10.3969/j.issn.1000-1093.2017.01.021
    Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., & Abbeel, P. (2018). Soft actor-critic algorithms and applications.
    Kurniawan, B., Vamplew, P., Papasimeon, M., Dazeley, R., & Foale, C. (2019). An empirical study of reward structures for actor-critic reinforcement learning in air combat manoeuvring simulation. AI 2019: Advances in Artificial Intelligence: 32nd Australasian Joint Conference, Adelaide, SA, Australia, December 2–5, 2019, Proceedings 32,
    Lei, X., Dali, D., Zhenglei, W., Zhifei, X., & Andi, T. (2021). Moving time UCAV maneuver decision based on the dynamic relational weight algorithm and trajectory prediction. Mathematical Problems in Engineering, 2021, 1-19.
    Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning.
    Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv
    Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
    Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim: High-fidelity visual and physical simulation for autonomous vehicles. Field and Service Robotics: Results of the 11th International Conference,
    Shah, S., Madaan, R., Vemprala, S., & Gyde, N. (2020). Airsim. Retrieved 5/13 from https://microsoft.github.io/AirSim/
    Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
    tusharsarkar3. (2021). Detect_Drone. Retrieved 7/15 from https://github.com/tusharsarkar3/Detect_Drone
    Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 279-292. https://doi.org/10.1007/BF00992698
    Yang, Q., Zhu, Y., Zhang, J., Qiao, S., & Liu, J. (2019). UAV air combat autonomous maneuver decision based on DDPG algorithm. 2019 IEEE 15th international conference on control and automation (ICCA),
    Zheng, J., Ma, Q., Yang, S., Wang, S., Liang, Y., & Ma, J. (2020). Research on cooperative operation of air combat based on multi-agent. Human Interaction, Emerging Technologies and Future Applications II: Proceedings of the 2nd International Conference on Human Interaction and Emerging Technologies: Future Applications (IHIET–AI 2020), April 23-25, 2020, Lausanne, Switzerland,
    康曉嵐. (2021). 無人飛行載具在防衛作戰運用的探討. 戰略與評估, 第十一卷第一期.
    陳津萍. (2021). 中國大陸無人機「集群作戰」發展之研究. 空軍學術雙月刊, 第680期.

    無法下載圖示 校內:2028-07-20公開
    校外:2028-07-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE