簡易檢索 / 詳目顯示

研究生: 邱宜凡
Chiu, Yi-Fan
論文名稱: 驗證肝癌中Wnt/β-catenin傳遞路徑之新穎基因
Validation of novel target genes of the Wnt/β-catenin signaling pathway in hepatocellular carcinoma
指導教授: 何中良
Ho, Chung-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: Wnt/β-catenin傳遞路徑標靶基因TCF結合位點Wnt響應元件肝癌
外文關鍵詞: Wnt/β-catenin signaling pathway, target gene, TCF binding element (TBE), Wnt responsive element (WRE), hepatocellular carcinoma (HCC)
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Wnt/β-catenin傳遞路徑是肝癌(HCC)中經常失調的傳遞路徑,不僅參與調控胚胎的早期發育,也參與成年動物的正常生理調節以及癌症的發生在沒有Wnt蛋白刺激的情況下,細胞質中的多蛋白破壞複合物(multiprotein destruction complex)會促進β-catenin的磷酸化,進一步將β-catenin降解;當受到Wnt蛋白刺激時,破壞複合物會被吸附至細胞膜上,使β-catenin在細胞質中累積,最終進入細胞核,與LEF-1和TCF結合,活化Wnt標靶基因的表達。Wnt/β-catenin傳遞路徑的失調,以及Wnt/β-catenin標靶基因的異常活化,在各種人類癌症中非常常見,並且會促進癌症發展。因此,鑑定Wnt/β-catenin傳遞路徑的標靶基因是很重要的。在過去我們使用生物資訊學和實驗相結合的方法,找到三個新穎的Wnt/β-catenin標靶基因:POMGNT2 (C3orf39)、RMI2和ZNF496。而在本研究中還有四個潛在的基因待驗證,分別為CCDC77、ETV4、GPR107和METTL1。為了進一步確認這四個基因所預測的TCF結合位點,我們使用冷光素酶報告基因檢測(luciferase reporter assay)、截短實驗(truncation assay)和點突變實驗(point mutation assay)完成驗證。另外,確定基因在肝癌中的表達也是本研究的重點。由luciferase reporter assay發現CCDC77轉錄活性不受β-catenin的影響,但在一系列的truncation assay和point mutation assay中,顯示CCDC77的TBE2可能是弱的WRE。GPR107亦檢測到弱的啟動子(promoter)活性,且不受β-catenin調控,根據其啟動子轉錄活性檢測結果,推測內部具有不只一個的轉錄抑制位點。而ETV4和METL1的啟動子則具有高度轉錄活性,並且可以被β-catenin活化。通過連續啟動子truncation assay並以β-catenin活化,比較了不同大小片段的目標基因作用,顯示ETV4和METTL1的高轉錄活性並非源自生物資訊軟體所預測的TCF結合位點,並且ETV4的Wnt響應元件(Wnt responsive element, WRE)可能在-116 bp內,而METTL1則是在-295 bp至-148 bp之間。同時,根據TCGA數據庫的分析,顯示四個潛在基因與肝癌的存活率顯著相關。透過半定量RT-PCR,檢測了15例來自國立成功大學醫學院附設醫院肝癌患者的腫瘤組織和鄰近的非腫瘤組織的基因表達。結果發現基因在肝腫瘤組織中有很高的機率過表現,而這些與TCGA數據庫的分析結果一致。總結目前的研究成果,我們確認了ETV4和METTL1是Wnt/β-catenin傳遞路徑中的相關基因,並且很可能是該傳遞路徑的直接標靶基因。這兩個基因仍然需要以point mutation assay來驗證WRE的位置。對於CCDC77和GPR107,雖然皆檢測到低的轉錄活性,但目前的研究還不能認定此兩個基因非Wnt/β-catenin直接標靶基因。可能的TCF結合位點需要再往啟動子的上游尋找約3kb才能確定。另一方面,此四個基因都有在肝臟腫瘤中過表達的趨勢,並可能成為肝癌臨床治療的癌症標誌物。期望在這四個潛在基因中驗證出數個新穎的Wnt/β-catenin傳遞路徑標靶基因。

    Previously, we used a combined bioinformatics and experimental approach to find three novel Wnt/β-catenin target genes. In this study, there are additional four potential genes remained to be verified: CCDC77, ETV4, GPR107 and METTL1. To further validate the putative TCF-binding element of four novel Wnt/β-catenin direct targets, we used the luciferase reporter assay, truncation assay and point mutation assay. The promoters of ETV4 and METTL1 showed high transcriptional activity and were regulated by β-catenin, but they did not derive from predicted typical TCF-binding elements. GPR107 didn’t detect a strong promoter activity and appeared to have transcriptional inhibition sites. CCDC77 didn’t show strong activity in its promoter, but TBE2 may be a weak Wnt responsive element (WRE). Moreover, four genes show significant correlation with the survival of HCC and were upregulated in HCC tumor tissues compared with their normal counterparts. Collectively, we confirmed that ETV4 and METTL1 were likely to be direct target genes in the Wnt/β-catenin signaling pathway. For CCDC77 and GPR107, although no strong transcriptional activity had been detected, the potential TCF binding element may be upstream of the promoter. Finally, we believe that these four genes still have research potential and may become cancer markers for clinical treatment of HCC.

    中文摘要 I 英文延伸摘要(Extended Abstract) III 致謝 IX 目錄 XI 表目錄 XIV 圖目錄 XV 附錄目錄 XVI 第一章  緒論 1 1.1 肝癌 1 1.1.1 簡介 1 1.1.2 肝癌在分子生物學中的意義 1 1.1.3 肝癌的臨床診斷及治療 2 1.1.3.1 臨床診斷 2 1.1.3.2 臨床治療 4 1.2 Wnt訊息傳遞路徑總覽 6 1.2.1 Wnt蛋白配體(Ligand) 6 1.2.2 Wnt受體(Receptor) 8 1.2.3 Wnt傳遞路徑 9 1.2.3.1 經典Wnt傳遞路徑(Canonical Wnt Pathway) 9 1.2.3.2 非經典Wnt訊息傳遞路徑(Non-canonical Wnt Pathway) 12 1.3 Wnt/β-catenin傳遞路徑應用 13 1.3.1 Wnt/β-catenin傳遞路徑與癌症形成 13 1.3.2 Wnt/β-catenin傳遞路徑目前在臨床之應用 14 1.4 生物資訊 17 1.4.1 表現序列標幟(Expressed Sequence Taq) 17 1.4.2 生物資料庫(Bio-database)的建立 18 1.4.3 利用生物資訊方法找尋新穎的Wnt/β-catenin標靶基因 19 1.4.4 CCDC77、ETV4、GPR107及METTL1基因可能為Wnt/β-catenin傳遞路徑之新穎基因 20 1.5 候選基因CCDC77、ETV4、GPR107及METTL1之簡介 21 1.6 實驗目的 22 第二章  實驗材料與方法 24 2.1 細胞培養與實驗 24 2.1.1 實驗細胞株及試劑 24 2.1.2 解凍細胞 25 2.1.3 細胞培養(繼代培養Subculture) 25 2.1.4 細胞計數 25 2.1.5 細胞冷凍儲存 26 2.1.6 細胞轉染作用(Transfection) 26 2.1.7 雙冷光素酶報告基因檢測(Dual-Luciferase Reporter Assay) 26 2.2 分子生物技術 27 2.2.1 Genomic DNA提取 27 2.2.2 RNA提取(RNA Extraction) 28 2.2.3 反轉錄合成(Reverse Transcription Reaction) 30 2.2.4 聚合酶鏈鎖反應(Polymerase Chain Reaction) 31 2.2.4.1 一般聚合酶鏈鎖反應 31 2.2.4.2 點突變(Site-Directed Mutagenesis)聚合酶鏈鎖反應 33 2.2.5 洋菜瓊脂製備(Agarose gel) 34 2.2.6 DNA純化(DNA purification) 34 2.2.6.1 純化PCR產物 (DNA Clean up) 34 2.2.6.2 萃取膠體中的DNA (DNA Gel Extraction) 35 2.2.7 構築質體之方法(Construct) 35 2.2.7.1 限制酶切割質體DNA (Restriction Enzyme) 35 2.2.7.2 質體DNA去磷酸化反應(Dephosphorylation) 36 2.2.7.3 核酸接合作用(DNA ligation) 36 2.2.7.4 大腸桿菌轉型作用(E.Coli Transformation) 37 2.2.7.5 定序(Sequencing) 38 2.2.7.6 勝任細胞(Competent Cell)製備 38 2.2.8 質體製備(Plasmid DNA) 39 2.2.8.1 小量質體製備(Small-scale Preparations of Plasmid DNA) 39 2.2.8.2 中量質體製備(Midi-scale Preparations of Plasmid DNA) 40 2.2.9 質體構築(Construct) 41 2.3 生物資訊軟體 42 2.3.1 利用NCBI及GeneCards數據庫找查基因背景資料 42 2.3.2 利用The Human Protein Atlas分析蛋白質在人體的表現位置 42 2.3.3 利用Ensembl找尋基因Promoter區域 42 2.3.4 利用ALGGEN-PROMO預測轉錄因子結合位點 42 2.3.5 利用ChIP Atlas搜尋轉錄因子結合位點 43 2.3.6 利用cBioPortal進行癌症存活率分析 43 2.3.7 利用QuikChange Primer Design設計點突變之Primer 43 2.3.8 利用NCBI BLAST進行序列比對 44 2.3.9 利用Taiwan BioBank分析SNP 44 2.4 數據分析與統計 44 第三章  實驗結果 45 3.1 候選基因之Promoter質體構築(Construct) 45 3.1.1 CCDC77之質體構築 45 3.1.2 ETV4之質體構築 46 3.1.3 GPR107之質體構築 46 3.1.4 METTL1之質體構築 46 3.2 以Luciferase Reporter Assay驗證候選基因是否為Wnt/β-catenin標靶基因 47 3.2.1 Luciferase Reporter Assay流程之建立 47 3.2.2 探討CCDC77之promoter轉錄活性 48 3.2.3 探討ETV4之promoter轉錄活性 49 3.2.4 探討GPR107之promoter轉錄活性 49 3.2.5 探討METTL1之promoter轉錄活性 50 3.3 確認候選基因在肝癌中的表現 51 3.3.1 CCDC77在肝癌組織中的表現 51 3.3.2 ETV4在肝癌組織中的表現 52 3.3.3 GPR107在肝癌組織中的表現 52 3.3.4 METTL1在肝癌組織中的表現 52 第四章  討論 54 4.1 候選基因之Promoter質體構築(Construct) 54 4.2 探討以Luciferase Reporter Assay驗證候選基因之結果 55 4.3 探討候選基因在肝癌中的表現 57 4.4 候選基因所轉錄之蛋白質在細胞位置的分析 58 第五章  表 59 第六章  圖 69 第七章  參考文獻 88 第八章  附錄 97

    1. Global Burden of Disease Cancer, C., et al., Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA oncology, 2017. 3(4): p. 524-548.
    2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 2020. 70(1): p. 7-30.
    3. Balogh, J., et al., Hepatocellular carcinoma: a review. Journal of hepatocellular carcinoma, 2016. 3: p. 41-53.
    4. Dhanasekaran, R., S. Bandoh, and L.R. Roberts, Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research, 2016. 5: p. F1000 Faculty Rev-879.
    5. Yang, J.D., et al., A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nature Reviews Gastroenterology & Hepatology, 2019. 16(10): p. 589-604.
    6. Dimitroulis, D., et al., From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world. World journal of gastroenterology, 2017. 23(29): p. 5282-5294.
    7. Pons, F., M. Varela, and J.M. Llovet, Staging systems in hepatocellular carcinoma. HPB : the official journal of the International Hepato Pancreato Biliary Association, 2005. 7(1): p. 35-41.
    8. Boyault, S., et al., Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology, 2007. 45(1): p. 42-52.
    9. Desai, J.R., et al., Systemic therapy for advanced hepatocellular carcinoma: an update. Journal of gastrointestinal oncology, 2017. 8(2): p. 243-255.
    10. Olsen, S.K., R.S. Brown, and A.B. Siegel, Hepatocellular carcinoma: review of current treatment with a focus on targeted molecular therapies. Therapeutic advances in gastroenterology, 2010. 3(1): p. 55-66.
    11. Murphy, D.J., A. Aghayev, and M.L. Steigner, Vascular CT and MRI: a practical guide to imaging protocols. Insights into imaging, 2018. 9(2): p. 215-236.
    12. van Beek, E.J.R. and E.A. Hoffman, Functional imaging: CT and MRI. Clinics in chest medicine, 2008. 29(1): p. 195-vii.
    13. Russo, F.P., et al., When and how should we perform a biopsy for HCC in patients with liver cirrhosis in 2018? A review. Digestive and Liver Disease, 2018. 50(7): p. 640-646.
    14. Daher, S., et al., Current and Future Treatment of Hepatocellular Carcinoma: An Updated Comprehensive Review. Journal of clinical and translational hepatology, 2018. 6(1): p. 69-78.
    15. Ikeda, M., et al., Chemotherapy for hepatocellular carcinoma: current status and future perspectives. Japanese Journal of Clinical Oncology, 2017. 48(2): p. 103-114.
    16. Le Grazie, M., et al., Chemotherapy for hepatocellular carcinoma: The present and the future. World journal of hepatology, 2017. 9(21): p. 907-920.
    17. Chen, C.P., Role of Radiotherapy in the Treatment of Hepatocellular Carcinoma. Journal of clinical and translational hepatology, 2019. 7(2): p. 183-190.
    18. Montironi, C., R. Montal, and J.M. Llovet, New Drugs Effective in the Systemic Treatment of Hepatocellular Carcinoma. Clinical liver disease, 2019. 14(2): p. 56-61.
    19. Doycheva, I. and P.J. Thuluvath, Systemic Therapy for Advanced Hepatocellular Carcinoma: An Update of a Rapidly Evolving Field. Journal of Clinical and Experimental Hepatology, 2019. 9(5): p. 588-596.
    20. Lee, H.W., K.J. Cho, and J.Y. Park, Current Status and Future Direction of Immunotherapy in Hepatocellular Carcinoma: What Do the Data Suggest? Immune network, 2020. 20(1): p. e11-e11.
    21. Lie, D.C., et al., Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005. 437(7063): p. 1370-5.
    22. Ng, L.F., et al., WNT Signaling in Disease. Cells, 2019. 8(8): p. 826.
    23. Nusslein-Volhard, C. and E. Wieschaus, Mutations affecting segment number and polarity in Drosophila. Nature, 1980. 287(5785): p. 795-801.
    24. Nusse, R., et al., Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature, 1984. 307(5947): p. 131-6.
    25. Rijsewijk, F., et al., The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 1987. 50(4): p. 649-57.
    26. Takada, R., et al., Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Developmental Cell, 2006. 11(6): p. 791-801.
    27. Willert, K. and R. Nusse, Wnt proteins. Cold Spring Harbor perspectives in biology, 2012. 4(9): p. a007864-a007864.
    28. MacDonald, B.T., et al., Disulfide bond requirements for active Wnt ligands. The Journal of Biological Chemistry, 2014. 289(26): p. 18122-18136.
    29. Herr, P. and K. Basler, Porcupine-mediated lipidation is required for Wnt recognition by Wls. Developmental Biology, 2012. 361(2): p. 392-402.
    30. Mikels, A.J. and R. Nusse, Wnts as ligands: processing, secretion and reception. Oncogene, 2006. 25(57): p. 7461-7468.
    31. Komekado, H., et al., Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells, 2007. 12(4): p. 521-34.
    32. Kurayoshi, M., et al., Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochemical Journal, 2007. 402(3): p. 515-23.
    33. Petersen, J., et al., Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. Nature Communications, 2017. 8(1): p. 226.
    34. Dann, C.E., et al., Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature, 2001. 412(6842): p. 86-90.
    35. Schulte, G. and V. Bryja, The Frizzled family of unconventional G-protein-coupled receptors. Trends in Pharmacological Sciences, 2007. 28(10): p. 518-525.
    36. Chien, A.J., W.H. Conrad, and R.T. Moon, A Wnt survival guide: from flies to human disease. Journal of Investigative Dermatology, 2009. 129(7): p. 1614-27.
    37. Xavier, C.P., et al., Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/beta-catenin signaling. Cellular Signalling, 2014. 26(1): p. 94-101.
    38. Pinson, K.I., et al., An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 2000. 407(6803): p. 535-8.
    39. Tamai, K., et al., LDL-receptor-related proteins in Wnt signal transduction. Nature, 2000. 407(6803): p. 530-5.
    40. Bourhis, E., et al., Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. The Journal of Biological Chemistry, 2010. 285(12): p. 9172-9.
    41. Matoba, K., et al., Conformational Freedom of the LRP6 Ectodomain Is Regulated by N-glycosylation and the Binding of the Wnt Antagonist Dkk1. Cell Reports, 2017. 18(1): p. 32-40.
    42. Berger, H., et al., PTK7 localization and protein stability is affected by canonical Wnt ligands. Journal of Cell Science, 2017. 130(11): p. 1890-1903.
    43. Mikels, A.J. and R. Nusse, Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS biology, 2006. 4(4): p. e115-e115.
    44. Miyabayashi, T., et al., Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(13): p. 5668-5673.
    45. Geyer, F.C., et al., β-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Modern Pathology, 2011. 24(2): p. 209-231.
    46. Stewart, D.J., Wnt signaling pathway in non-small cell lung cancer. Journal of the National Cancer Institute, 2014. 106(1): p. djt356.
    47. Kim, S. and S. Jeong, Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases. Molecules and cells, 2019. 42(1): p. 8-16.
    48. Provost, E., et al., Functional correlates of mutation of the Asp32 and Gly34 residues of beta-catenin. Oncogene, 2005. 24(16): p. 2667-76.
    49. Arend, R.C., et al., The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecologic Oncology, 2013. 131(3): p. 772-9.
    50. Xing, Y., et al., Crystal structure of a full-length beta-catenin. Structure, 2008. 16(3): p. 478-87.
    51. Mosimann, C., G. Hausmann, and K. Basler, β-Catenin hits chromatin: regulation of Wnt target gene activation. Nature Reviews Molecular Cell Biology, 2009. 10(4): p. 276-286.
    52. Omer, C.A., et al., Identification of Tcf4 residues involved in high-affinity beta-catenin binding. Biochemical and Biophysical Research Communications, 1999. 256(3): p. 584-90.
    53. Zhao, D.H., et al., Aberrant expression and function of TCF4 in the proliferation of hepatocellular carcinoma cell line BEL-7402. Cell Research, 2004. 14(1): p. 74-80.
    54. Arce, L., N.N. Yokoyama, and M.L. Waterman, Diversity of LEF/TCF action in development and disease. Oncogene, 2006. 25(57): p. 7492-7504.
    55. Chang, M.V., et al., Activation of wingless targets requires bipartite recognition of DNA by TCF. Current Biology, 2008. 18(23): p. 1877-81.
    56. Su, Y., et al., APC is essential for targeting phosphorylated beta-catenin to the SCFbeta-TrCP ubiquitin ligase. Molecular Cell, 2008. 32(5): p. 652-61.
    57. Yamamoto, H., et al., Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. The Journal of Biological Chemistry, 1999. 274(16): p. 10681-4.
    58. Liu, C., et al., Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 2002. 108(6): p. 837-47.
    59. Wu, G., et al., Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Molecular Cell, 2003. 11(6): p. 1445-56.
    60. Cavallo, R.A., et al., Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature, 1998. 395(6702): p. 604-608.
    61. Chen, G., et al., A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes & Development, 1999. 13(17): p. 2218-30.
    62. Brantjes, H., et al., All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Research, 2001. 29(7): p. 1410-9.
    63. Mao, J., et al., Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Molecular Cell, 2001. 7(4): p. 801-9.
    64. Daugherty, R.L., et al., α-Catenin is an inhibitor of transcription. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(14): p. 5260-5265.
    65. Sun, Y., J. Zhang, and L. Ma, α-catenin. A tumor suppressor beyond adherens junctions. Cell cycle (Georgetown, Tex.), 2014. 13(15): p. 2334-2339.
    66. Tree, D.R., et al., Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell, 2002. 109(3): p. 371-81.
    67. Habas, R., Y. Kato, and X. He, Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell, 2001. 107(7): p. 843-54.
    68. Kohn, A.D. and R.T. Moon, Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium, 2005. 38(3-4): p. 439-46.
    69. Sheldahl, L.C., et al., Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. Journal of Cell Biology, 2003. 161(4): p. 769-77.
    70. Habas, R. and I.B. Dawid, Dishevelled and Wnt signaling: is the nucleus the final frontier? Journal of biology, 2005. 4(1): p. 2-2.
    71. Johnson, E., et al., HER2/ErbB2-induced breast cancer cell migration and invasion require p120 catenin activation of Rac1 and Cdc42. The Journal of Biological Chemistry, 2010. 285(38): p. 29491-501.
    72. Torres, M.A., et al., Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. Journal of Cell Biology, 1996. 133(5): p. 1123-37.
    73. Ishitani, T., et al., The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Molecular and Cellular Biology, 2003. 23(1): p. 131-9.
    74. Kikuchi, A., Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Science, 2003. 94(3): p. 225-9.
    75. Miller, J.R., The Wnts. Genome biology, 2002. 3(1): p. REVIEWS3001- REVIEWS3001.
    76. Rebouissou, S., et al., Genotype-phenotype correlation of CTNNB1 mutations reveals different ss-catenin activity associated with liver tumor progression. Hepatology, 2016. 64(6): p. 2047-2061.
    77. Jung, Y.-S. and J.-I. Park, Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Experimental & Molecular Medicine, 2020. 52(2): p. 183-191.
    78. Whitfield, J.R., M.-E. Beaulieu, and L. Soucek, Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in cell and developmental biology, 2017. 5: p. 10-10.
    79. Luu, H.H., et al., Wnt/beta-catenin signaling pathway as a novel cancer drug target. Current Cancer Drug Targets, 2004. 4(8): p. 653-71.
    80. Local, A., et al., APTO-253 Stabilizes G-quadruplex DNA, Inhibits MYC Expression, and Induces DNA Damage in Acute Myeloid Leukemia Cells. Molecular Cancer Therapeutics, 2018. 17(6): p. 1177-1186.
    81. Zhang, H., et al., Inhibition of c-Myc By Apto-253 As an Innovative Therapeutic Approach to Induce Cell Cycle Arrest and Apoptosis in Acute Myeloid Leukemia. Blood, 2016. 128: p. 1716-1716.
    82. Howell, S., H. Zhang, and W. Rice, A Phase 1a/b Dose Escalation Study of Apto-253 in Patients with Relapsed or Refractory AML or High-Risk MDS. Blood, 2019. 134: p. 5148-5148.
    83. Kim, Y., S. Thanendrarajan, and I.G.H. Schmidt-Wolf, Wnt/ß-Catenin: A New Therapeutic Approach to Acute Myeloid Leukemia. Leukemia Research and Treatment, 2011. 2011: p. 428960.
    84. Dihlmann, S. and M. von Knebel Doeberitz, Wnt/β-catenin-pathway as a molecular target for future anti-cancer therapeutics. International Journal of Cancer, 2005. 113(4): p. 515-524.
    85. Zhou, X., et al., The role of celecoxib for colorectal cancer treatment: a systematic review. Translational Cancer Research, 2018. 7(6): p. 1527-1536.
    86. Tanne, J.H., Rofecoxib may cause heart attacks in first weeks of use. BMJ : British Medical Journal, 2006. 332(7550): p. 1114-1114.
    87. Kahraman, A., et al., Matrix metalloproteinase inhibitor, CTS-1027, attenuates liver injury and fibrosis in the bile duct-ligated mouse. Hepatology research : the official journal of the Japan Society of Hepatology, 2009. 39: p. 805-13.
    88. San-Miguel, J., et al., Phase 2 randomized study of bortezomib-melphalan- prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood, 2014. 123(26): p. 4136-4142.
    89. Spaan, I., et al., Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential. Journal of hematology & oncology, 2018. 11(1): p. 67-67.
    90. Jaiswal, P.K., A. Goel, and R.D. Mittal, Survivin: A molecular biomarker in cancer. The Indian journal of medical research, 2015. 141(4): p. 389-397.
    91. Sun, D.-w., et al., Prognostic significance of MMP-7 expression in colorectal cancer: A meta-analysis. Cancer Epidemiology, 2015. 39(2): p. 135-142.
    92. Szarvas, T., et al., Matrix metalloproteinase-7 as a marker of metastasis and predictor of poor survival in bladder cancer. Cancer Science, 2010. 101(5): p. 1300-1308.
    93. Pishvaian, M.J. and S.W. Byers, Biomarkers of WNT signaling. Cancer Biomark, 2007. 3(4-5): p. 263-74.
    94. Adams, M.D., et al., Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991. 252(5013): p. 1651-6.
    95. Nagaraj, S.H., R.B. Gasser, and S. Ranganathan, A hitchhiker's guide to expressed sequence tag (EST) analysis. Briefings in Bioinformatics, 2007. 8(1): p. 6-21.
    96. Clifton, S.W. and M. Mitreva, Strategies for undertaking expressed sequence tag (EST) projects. Methods in Molecular Biology, 2009. 533: p. 13-32.
    97. Emmersen, J., Generating unigene collections of expressed sequence tag sequences for use in mass spectrometry identification. Methods in Molecular Biology, 2007. 367: p. 77-86.
    98. 周靖恆, 結合生物資訊的方法探討腫瘤相關基因在人類腎臟癌中的表現, in 分子醫學研究所. 2005, 國立成功大學: 台南市. p. 75.
    99. Severin, S.E., et al., Antitumor activity of conjugates of the oncofetal protein alpha-fetoprotein and phthalocyanines in vitro. Biochemistry and Molecular Biology International, 1997. 43(4): p. 873-81.
    100. Loganath, A., et al., Comparison of AFP and beta-hCG levels in infiltrating duct mammary carcinoma at different stages of malignancy. Pathology, 1988. 20(3): p. 275-8.
    101. Liao, B., et al., The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. The Journal of Biological Chemistry, 2005. 280(18): p. 18517-24.
    102. Shimokawa, T., et al., Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Research, 2003. 63(19): p. 6116-20.
    103. Güre, A.O., et al., Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(8): p. 4198-4203.
    104. 林珮雯, 探討一個新的胚胎腫瘤幹細胞標記, in 分子醫學研究所. 2016, 國立成功大學: 台南市. p. 72.
    105. 葉秀汝, 探討一個新的胚胎腫瘤幹細胞標記, in 分子醫學研究所. 2014, 國立成功大學: 台南市. p. 91.
    106. Cheng, S.W., et al., Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma. PLoS One, 2013. 8(11): p. e80053.
    107. Hsu, C.C., et al., Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene, 2011. 30(6): p. 654-667.
    108. Jho, E.H., et al., Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and Cellular Biology, 2002. 22(4): p. 1172-83.
    109. Kim, J.S., et al., Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Research, 2002. 62(10): p. 2744-8.
    110. Clevers, H. and E. Batlle, EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Research, 2006. 66(1): p. 2-5.
    111. Mansukhani, A., et al., Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. Journal of Cell Biology, 2005. 168(7): p. 1065-76.
    112. Yao, H.H., et al., Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Developmental Dynamics, 2004. 230(2): p. 210-5.
    113. Wu, B., S.P. Crampton, and C.C. Hughes, Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity, 2007. 26(2): p. 227-39.
    114. Kioussi, C., et al., Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell, 2002. 111(5): p. 673-85.
    115. Zhang, T., et al., Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 2001. 61(24): p. 8664-7.
    116. 陳怡文, 結合生物資訊暨實驗篩選以尋找 Wnt/β-catenin 傳遞路徑之新穎基因, in 醫學檢驗生物技術學系碩士班. 2011, 國立成功大學: 台南市. p. 78.
    117. 張瀞云, Zinc Finger Protein 496 在肝癌中是一個有潛力的Wnt/β-catenin 路徑中的標的基因, in 醫學檢驗生物技術學系碩士班. 2016, 國立成功大學: 台南市. p. 55.
    118. 謝旻樺, 尋找及探討具備腫瘤胚特性之新穎生物標記基因並強調於Zinc Finger Protein 496, in 分子醫學研究所. 2017, 國立成功大學: 台南市. p. 64.
    119. 黃孟柔, Wnt/beta-catenin傳遞路徑之新穎基因在肝癌細胞中的生物功能, in 分子醫學研究所. 2019, 國立成功大學: 台南市. p. 79.
    120. Guo, B. and A.D. Sharrocks, Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3. Molecular and cellular biology, 2009. 29(11): p. 3204-3218.
    121. Pellecchia, A., et al., Overexpression of ETV4 is oncogenic in prostate cells through promotion of both cell proliferation and epithelial to mesenchymal transition. Oncogenesis, 2012. 1(7): p. e20-e20.
    122. Rodriguez, A.C., et al., ETV4 Is Necessary for Estrogen Signaling and Growth in Endometrial Cancer Cells. Cancer Research, 2020.
    123. Tyagi, N., et al., ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1. Molecular Cancer Research, 2018. 16(2): p. 187-196.
    124. Wang, Y., et al., ETV4 overexpression promotes progression of non-small cell lung cancer by upregulating PXN and MMP1 transcriptionally. Molecular Carcinogenesis, 2020. 59(1): p. 73-86.
    125. Zeng, S., et al., ETV4 collaborates with Wnt/beta-catenin signaling to alter cell cycle activity and promote tumor aggressiveness in gastrointestinal stromal tumor. Oncotarget, 2017. 8(69): p. 114195-114209.
    126. Huang, G., et al., LncGPR107 drives the self-renewal of liver tumor initiating cells and liver tumorigenesis through GPR107-dependent manner. Journal of Experimental & Clinical Cancer Research, 2018. 37(1): p. 121.
    127. Yosten, G.L.C., L.J. Redlinger, and W.K. Samson, Evidence for an interaction of neuronostatin with the orphan G protein-coupled receptor, GPR107. American journal of physiology. Regulatory, integrative and comparative physiology, 2012. 303(9): p. R941-R949.
    128. Tafesse, F.G., et al., GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin. The Journal of Biological Chemistry, 2014. 289(35): p. 24005-24018.
    129. Tian, Q.H., et al., METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. Journal of Molecular Medicine, 2019. 97(11): p. 1535-1545.
    130. Okamoto, M., et al., tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS genetics, 2014. 10(9): p. e1004639-e1004639.
    131. Kong, S.-Y., et al., The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2018. 32(2): p. 1108-1119.
    132. Mahmoudi, S., et al., Wrap53, a Natural p53 Antisense Transcript Required for p53 Induction upon DNA Damage. Molecular Cell, 2009. 33: p. 462-71.
    133. Koh, T.J., et al., Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. The Journal of clinical investigation, 2000. 106(4): p. 533-539.

    下載圖示 校內:2025-07-20公開
    校外:2025-07-20公開
    QR CODE