簡易檢索 / 詳目顯示

研究生: 王文德
Wang, Wen-De
論文名稱: 利用金做低溫金屬誘發橫向結晶(MILC)成長 應用於光電元件的複晶矽鍺薄膜之研究
The study of low temperature metal (Au) induced lateral crystallization (MILC) poly-Si1-xGex thin film for optoelectronic applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 80
中文關鍵詞: 複晶矽鍺金屬誘發結晶
外文關鍵詞: Au, Poly-SiGe, MILC
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係在研究利用金(Au)誘發非晶矽鍺(a-Si1-xGex:H)薄膜進行橫向結晶形成多晶矽鍺(poly-Si1-xGex)薄膜以供光電元件用之技術。首先利用電漿助長化學汽相沉積(PECVD)系統成長a-Si1-xGex:H薄膜,然後再利用指叉狀金屬光罩來蒸鍍或濺鍍Au及在不同的退火條件下,使a-Si1-xGex:H薄膜開始橫向結晶形成poly- Si1-xGex,此即為金屬橫向誘發結晶(MILC:Metal Induced Lateral Crystallization)技術。此技術的特點在於所成長的多晶晶粒的橫向長度大於縱向的寬度。因此可減少橫向的晶界(Grain Boundary)數目,有利於光電元件如TFT-LCD的橫向電流傳輸。

    經由實驗,吾人發現利用金誘發並在500℃及3~10小時退火條件下,其橫向結晶速度可達15.1~22μm/hr,相較於目前利用鎳Ni在500℃下退火,擁有較長的多晶晶粒(約2倍)及較快的結晶速率(約1.3倍)。另外值得注意是,利用此技術成長之薄膜TCR值,可比於利用高溫成長之poly-Si1-xGex,因此可利用此技術取代高溫製程發展poly-Si1-xGex的紅外線熱輻射感測器,以大幅降低成本,提昇產業競爭力。本論文以製作MSM結構光檢測器來驗證此技術成長之poly-Si1-xGex薄膜之可用性。所發展的檢測器,在室溫下,其光/暗電流比可達到8倍之多,已達實用階段。

    The gold (Au) metal induced lateral crystallization (MILC) of hydrogenated amorphous silicon germanium (a-Si1-xGex:H) thin films have been investigated with various annealing temperature (400~500℃) and annealing time (3~10hr). After 500℃, 3~10hr annealing treatment, the MILC rate of Au-induced a-Si1-xGex:H film can be up to 22mm/hr, which is approximate 1.3 times to that of the conventional Ni-induced. Additionally, the maximum length of induced grain with Au-induced technology is about 2 times to the one by the Ni-induced.
    Next, The TCR (Temperature coefficient of resistance) of the Au-induced poly-Si1-xGex is comparable to that of the film by high temperature LPCVD. Therefore the Au-induced low temperature MILC technology can replace the high temperature LPCVD process to develop low cost poly-Si1-xGex infrared bolometer. Furthermore, a M-S-M photo-detector has been developed with the Au-induced poly-Si1-xGex to verify usability of the technology. Experimental results show that under room temperature, the ratio of photo/dark current gain is 8, which is good enough for real applications.

    中文摘要 ………………………………………………………………Ⅰ 英文摘要 ………………………………………………………………Ⅱ 目錄 ……………………………………………………………………Ⅲ 圖表目錄 ………………………………………………………………Ⅵ 第一章 前言 ……………………………………………………………1 第二章 成長系統與元件製程 ………………………………………4 2-1 電漿助長化學汽相沉積系統(PECVD)……………………4 2-2 電子鎗蒸鍍系統(E-Gun Evaporator) ………………………6 2-3 退火系統 (Anneal System)…………………………………6 2-4 矽基板之清洗(Si Wafer Clean)………………………………7 2-5 製程步驟 ……………………………………………………7 第三章 金屬誘發結晶之原理 ………………………………………8 3-1 金屬誘發結晶 …………………………………………………8 3-1-1 前言 ……………………………………………………8 3-1-2 金屬Au誘發非晶矽薄膜之原理 ………………………9 3-1-3 金屬誘發非晶矽薄膜橫向結晶之原理 ………………10 3-2 金屬誘發非晶矽鍺薄膜之探討 …………………………12 第四章 金屬誘發非晶矽鍺薄膜之特性探討 ……………………14 4-1 前言 ………………………………………………………14 4-1-1 製程步驟 ……………………………………………14 4-2 X-Ray繞射圖對結晶品質之分析 …………………………15 4-3 拉曼光譜(Raman Spectrum)之分析 …………………16 4-4 SEM對結晶薄膜品質之分析 ……………………………16 4-5 橫向結晶長度之探討 ………………………………………17 4-5-1 橫向結晶長度之定義 ……………………………………17 4-5-2 不同時間的橫向結晶長度探討 ………………………18 4-5-3 轉角處的橫向結晶長度探討 ………………………………18 4-6 氫氣流量與薄膜品質 ………………………………………19 第五章 誘發結晶薄膜之電流-電壓特性探討 ……………………20 5-1 製程步驟 ……………………………………………………20 5-2 薄膜的電流-電壓特性 ……………………………………20 5-3 誘發結晶薄膜MSM結構光導體 …………………………21 5-3-1 工作原理 ……………………………………………21 5-3-2 元件製作流程 …………………………………………22 5-3-3 電流-電壓特性 …………………………………………22 第六章 誘發結晶薄膜之熱阻特性探討 ……………………………24 6-1 前言 ………………………………………………………24 6-2熱阻之量測方法 …………………………………………25 6-3 熱阻特性之量測 ……………………………………………25 第七章 結論與未來展望 ……………………………………………27 7-1 結論 …………………………………………………………27 7-2 未來展望 ……………………………………………………28 參考文獻 附表 附圖 誌謝與自述 表一 PECVD的成長參數表 表二 二氧化矽之成長參數 圖2-1 PECVD的成長系統圖 圖2-2 E-Gun的成長系統圖 圖2-3 退火系統圖 圖3-1 Si藉由Au誘發結晶的過程圖 圖3-2 金屬誘發橫向結晶示意圖 圖3-3 固相異質磊晶形成多晶矽鍺薄膜示意圖 圖3-4 金屬Ni誘發非晶矽鍺薄膜SEM圖 圖4-1 金屬誘發橫向結晶(MILC)的流程圖 圖4-2 金屬誘發結晶在不同退火溫度之X-ray繞射圖 圖4-3 在T=500℃下,不同退火時間之X-ray繞射圖 圖4-4 n-type、p-type 在T=500℃下,退火5小時的X-ray繞射圖 圖4-5 非晶矽鍺薄膜退火前與退火後之拉曼光譜 圖4-6 金屬誘發結晶(MIC)的實驗結果之SEM照片 圖4-7 利用指叉狀光罩進行金屬誘發橫向結晶(MILC) 圖4-8 金屬誘發橫向結晶(MILC)之SEM照片 圖4-9 定義橫向結晶(MILC)之結晶長度 圖4-10 不同退火時間與誘發金屬之MILC長度 圖4-11 在轉角處所橫向誘發的情形 圖4-12 氫氣流量太少時,薄膜表面SEM圖 圖5-1 多晶矽鍺與非晶矽鍺阻抗之示意圖 圖5-2 不同退火溫度之薄膜電流-電壓特性圖 圖5-3 在T=500℃下,不同退火時間之電流-電壓特性 圖5-4 不同溫度,薄膜片阻值與退火時間之關係圖 圖5-5 MSM結構製作流程與等效電路圖 圖5-6 暗電流對溫度之關係 圖5-7 光電流對溫度之關係(光源為0.5mW,400-900nm) 圖5-8 不同溫度下,光電流和暗電流之比 圖5-9(a) 在室溫下,不同波長光源照射下之光電流變化 圖5-9(b) 在50℃下,不同波長光源照射下之光電流變化 圖5-9(c) 在75℃下,不同波長光源照射下之光電流變化 圖5-9(d) 在100℃下,不同波長光源照射下之光電流變化 圖5-10 不同溫度與波長光源照射下之光暗電流比 圖6-1 測輻射熱感測器之基本架構 圖6-2 測量熱阻電阻值之電路圖 圖6-3 量測熱阻之設備圖 圖6-4 熱阻電阻值與溫度的關係

    [1]Jyh-Jier Ho, Y.K. Fang, K.H. Wu and S.C. Huang, M.S. Ju and Jing-Jenn Lin, “High-speed Amorphous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrates”, IEEE Trans. on Electron Devices, Vol.45, No.9, pp.2085-2088, Sept. (1998).
    [2]Jyh-Jier Ho, Y.K. Fang, K.H. Wu, and C.S. Tsai, “High-gain p-i-n infrared photosensors with Bragg reflectors on amorphous silicon alloy,” Appl. Phys. Lett.,.70 (7), pp.826-828, 17 Feb. (1997).
    [3]Y.V. Pomoarev, C. Salm, J. Schmitz, P.H. Woerlec, and D.J. Graveestijn, “High-Performance Deep Submicron MOSTs With Polycrystallic-(Si,Ge) Gates”, Proceeding of 1997 International Symposium on VLSI Technology, Systems and Application, 1997.
    [4]Youri V. Pomoarev, Peter A. Stolk, and Cora Salm, “High-Performance Deep Submicron CMOS Technology With Polycrystallic SiGe Gates”, IEEE Trans. Electron Devices, Vol. 47, NO.4 pp.848-855, 2000.
    [5]C. Salm, D.T. van Veen, D.T. Gravestijn, J. Holleman, and P.H. Woerlee, “Diffusion and Electrical Properties of Boron and Arsenic Doped Poly-Si and Poly-SixGe1-x(x~0.3) as Gate Material for Sub-0.25 um Complementary Metal Oxide Semiconductor Applications”, J. Electrochem. Soc., Vol.144, No.10, pp.3665-3673, 1997.
    [6]Tsu-Jae King and Krishna C. Saraswat, ”Polycrystalline Silicon-Germanium Thin-Film Transistors”, IEEE Trans. Electron Devices, Vol. 41, No.9, pp.1581-1591, 1994.
    [7]Julie A. Tsai, Andrew T. Tang, Takashi Noguchi, and Rafael Reif, ”Effects of Ge on Material and Electrical Properties of Polycrystalline SixGe1-x Thin-Film Transistors”, J. Electrochem. Soc., Vol.142, No.9, pp.3220-3225, 1995.
    [8]P. Van Gerwen, T. Salter, J.B. Chevrier, K. Baert, and R.Mertens, “Thin-film boron-doped Polycrystalline Si70%-Ge70% for thermopiles”, Sensors and Actuators A. 53 pp.325-329, 1996.
    [9]Sherif Sedky, Paolo Fiorini, Matty Caymax, Agnes Verbist and Chris Baert, “IR bolometer made of Polycrystalline silicon germanium”, Sensors and Actuators A. 66 pp.193-199, 1998.
    [10]Sherif Sedky, Paolo Fiorini, Chris Baert, Lou Hermans and Robert Mertens, ”Characterization and Optimization of Infrared Poly SiGe Bolometer”, IEEE Transactions on Electron Devices, Vol. 46, No. 4, April, pp.675-682, 1999.
    [11]H.C. Lin, C.Y. Chang, W.H. Chen, W.C. Chang, T.G. Jung and H.Y.Lin, “Effects of SiH4, GeH4 and B2H6 on the Nucleation and Deposition of Polycrystalline SixGe1-x Film”, J. Electrochem. Soc., Vol.141, No.9, pp.2559-2563, 1994.
    [12]Seong-Min Choe, Jeong-Ah Ahn and Ohyum Kim, “ Fabraction of Laser-Annealed Poly-TFT by Forming a SixGe1-x Thermal Barrier”, IEEE Electron Device Letters, Vol.22, No.3, March 2001.
    [13]Seok-Woon Lee, Yoo-Chan Jeon and Seung-Ki Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett., 66(13), 27 ,pp1671-1673, March 1995.
    [14]Jae Young, Ki Hyung Kim and Chae Ok Kim, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution:, J. Appl. Phys., 82(11), pp. 5865-5867, December 1997.
    [15]范盛宏、方炎坤, “金誘發非晶矽橫向結晶層之研製及特性分析”,國立成功大學電機工程學系碩士論文,民88年 6 月。
    [16]Z. Ma, Y. Xu, and L.H. Allen, “Low-temperature solid-phase hetero-epitaxial of Ge-rich SixGe1-x alloy on Si(100) by thermal annealing a-Ge/Au bi-layers”, Appl. Phys. Lett., 61(2), 13, pp225-227, July 1992.
    [17]S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, ”Characterization and Optimization of Infrared Poly SiGe Bolometers”, IEEE Trans. Electron Devices, Vol.46, No.4, PP.675, April 1999.
    [18]S.Sedky, P. Fiorini, M. Caymax, L. Hermans, and R. Mertens, ”Characterization of Bolometers Based on Polycrystalline Silicon Germanuim Alloys”, IEEE Trans. Electron Device Letters, Vol.19, No.10, PP.376, October 1998.
    [19]S. chiussi, C. serra, J. Serra, P. Gonzalez, B. Leon,..etc., ”Laser crystallization of poly-SiGe for microbolometers”, Applied Surface Science, vol(186), PP.166-172, 2002.
    [20]Hiroshi Kanno, Isao Tsunoda, Atsushi Kenjo, Taizoh Sadoh, Shinya Tamaguchi, Masanobu Miyao, ”Metal-induced solid-phase crystallization of amorphous SiGe film on insulator”, SSDM, 2002.
    [21]Zhonghe Jin, Gururaj A. Bhat, Milton Yeung, Hoi S. Kwok, Man Wong, “Solid-phase Reaction of Ni with amorphous SiGe thin film on SiO2”, Jpn. J. Appl. Phys., Vol.36, PP. L1637-1640, 1997.
    [22]T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki, Y. Okajima, and K. Miyata, J. Electrochem. Soc., vol.136, No.4, pp.1169-1173, 1989.
    [23]G. Radnoczi, A. Robertsson, H.T.G. Hentzell, S.F. Gong, and M.A. Gasan, J. Appl. Phys., 69(9), pp.6394-6399, 1991.
    [24]L. Hultman, A. Robertsson, H.T.G. Hertzell, “Crystallization of amorphous silicon during thin-film gold reaction”, J. Appl. Phys., 62(9), pp.3647-3655, 1987.
    [25]C.F. Cheng, M.C. Poon, C.W. Kok, Mansun Chan, “Modeling of Metal-Induced-Lateral-Crystallization Mechanism for Optimization of High Performance Thin-Film-Transistor Fabrication”, IEDM, pp.569-572, 2002
    [26]朱芳村,鄭晃忠,”以準分子雷射結晶方法製作低溫複晶矽鍺電晶體之研究”,國立交通大學電子工程研究所碩士論文,民91年6月。
    [27]Cohesion in metals: Transition Metal Alloys, edited by F.R. Deboer, R. Boom, W.C. Mattens, A.R. Miedema and A.K. Niessen (North Holland, Amsterdam, 1988)
    [28]A. Buxbaum, E. Zolotoyabko, M. Eizenberg, and F. Schaffler, Thin-Solid Films, 222,157,1993.
    [29]http://www.asi-net.net/asi.htm#amorphous
    [30]R. E.I. Schropp, P. A. T. T. van Veenendaal, and J. K. Rath, “very thin film deposited Poly-Si films for solar cells on stainless steel”, Proceedings of the 12th workshop on Quantum Solar Energy Conversion- (Quantsol 2000), March 11-18, 2000, Wolkenstein, Sudtirol, Italy

    下載圖示 校內:2004-07-04公開
    校外:2006-07-04公開
    QR CODE