簡易檢索 / 詳目顯示

研究生: 何秀芳
Ho, Hsiu-Fang
論文名稱: 資料傳輸率在車輛與基地台間無線通訊之分析
Analysis of Session Completion over Realistic Urban Traffic Condition in Infrastructure-Based Vehicular Networks
指導教授: 蘇淑茵
Sou, Sok-Ian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 64
中文關鍵詞: 車載網路傳輸成功率基地台
外文關鍵詞: AP, session completion probability, VANET
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著車載網路 (VANET) 的發展,車輛與基地台間傳輸品質的重要性也與日俱增。當基地台的佈建不夠密集而造成無線訊號強度不足的同時,車輛與基地台間資料傳輸的狀況便成了值得探討的議題。本篇論文提出了單一基地台內資料傳輸成功率(Session completion probability) 的數學模型做為傳輸品質的指標,同時更進一步探討不同的道路環境以及不同的傳輸方式對傳輸成功率的影響。為了使此數學模型更貼近實際的傳輸狀況,我們考慮了傳輸過程中可能會造成的損失以及車輛與基地台連線所花費的時間。最後設計了模擬來驗證所提出的數學模型的正確性,並且觀察模型中各種環境參數對於傳輸成功率所造成的影響。

    With increasing popularity of vehicular networks, the need for estimating the quality of networks transmission process is evident. In this thesis, we propose session completion probability models to analyse the quality of vehicular networks. It is the probability that a session of a vehicle can be finished during the network connection time when the vehicle passing through an AP's coverage area. Refer to the transmission process, we consider packet loss and retransmission rate, the DCF technique, and the association delay when the wireless equipment of a vehicle connects to an AP. For the vehicle travel time in an AP's coverage area, we use an estimation method to find the best distribution of the travel time. In the proposed models, we analyse two scenarios and two session transmission methods. Scenarios we analyse are APs in the urban area and the highway scenarios. Also, sessions we evaluate are the random download session for users and the early download session for vehicular network systems. Moreover, we use simulation experiments to validate the proposed analytic model. Finally, we discuss the performances in detail of each figure.

    Contents Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 Introduction 1 2 Background 3 2.1 Vehicle Travel Time in Urban AP Systems . . . . . . . . . . . . . . . . 3 2.2 Vehicle Travel Time Estimation in Urban AP Systems . . . . . . . . . . 7 3 Session Completion Model 12 3.1 Session Completion Probability in AP Systems . . . . . . . . . . . . . . 12 3.1.1 Random Download . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.2 Early Download . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Special Case for Highway Scenarios . . . . . . . . . . . . . . . . . . . . 20 4 Simulation Model 23 4.1 Session Completion Probability in Urban AP Systems . . . . . . . . . . 23 4.1.1 Random download . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 Early download . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Session Completion Probability in Highway Scenarios . . . . . . . . . . 28 5 Performance Evaluation 32 6 Extension 45 6.1 Urban AP Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2 Highway Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7 Conclusion 51 8 Appendix 52 8.1 TCP Session Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.2 MAC Session Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.3 MAC Layer Handoff Latency . . . . . . . . . . . . . . . . . . . . . . . . 59 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    [1] IEEE Draft Standard for Amendment to Standard [for] Information Technology Telecommunications and information exchange between systems Local and Metropolitan networks-Specific requirements-Part II: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications-Amendment 6: Wireless Access in Vehicular Environments. IEEE Std P802.11p/D11.0 April 2010, pages 1–35.
    [2] Intel and 802.11. http://www.intel.com/standards/case/case_802_11.htm.
    [3] WiFi Data Offload. http://www.wifidataoffload.com/.
    [4] Alfredo H-S Ang and Wilson H. Tang. Probability Concepts in Engineering Plan-
    ning and Design, volume 1. J. Wiley & Sons, New York, 1984. [5] Alfredo Hua-Sing Ang and Wilson H. Tang. Probability concepts in engineering: emphasis on applications in civil and environmental engineering. Wiley, New York, 2007.
    [6] Phillips W. J. Artimy, M. M. and W. Robertson. Connectivity with static transmission range in vehicular ad hoc networks. In Communication Networks and Services Research Conference, 2005. Proceedings of the 3rd Annual, pages 237–242, 2005.
    [7] Ratul Mahajan et al. Aruna, Balasubramanian. Interactive wifi connectivity for moving vehicles. SIGCOMM Comput. Commun. Rev., 38(4):427–438, 2008.
    [8] Minho Shin Arunesh, Mishra and Arbaugh William. An empirical analysis of the IEEE 802.11 MAC layer handoff process. SIGCOMM Comput. Commun. Rev., 33(2):93–102, 2003.
    [9] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on, Selected Areas in Communications, 18(3):535–547, 2000.
    [10] P. I. Bratanov and E. Bonek. Mobility model of vehicle-borne terminals in urban cellular systems. IEEE Transactions on, Vehicular Technology, 52(4):947–952, 2003.
    [11] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic: evidence and possible causes. IEEE/ACM Transactions on, Networking, 5(6):835–846, 1997.
    [12] Akatsuka H. Gallagher, B. and H. Suzuki. Wireless communications for vehicle safety: Radio link performance and wireless connectivity methods. Vehicular Technology Magazine, IEEE, 1(4):4–24, 2006.
    [13] Keshav Srinivasan et al. Hadaller, David. Vehicular opportunistic communication under the microscope. International Conference on Mobile Systems, Applications, and Services, pages 206–219, 2007.
    [14] Victor Firoiu et al. Jitendra, Padhye. Modeling TCP throughput: a simple model and its empirical validation. SIGCOMM Comput. Commun. Rev., 28(4):303–314, 1998.
    [15] Treiber M. Kesting, A. and D. Helbing. Connectivity Statistics of Store-and-Forward Intervehicle Communication. Intelligent Transportation Systems, IEEE Transactions on, 11(1):172–181, 2010.
    [16] Qun Li et al. Lei, Xie. Achieving efficiency and fairness for association control in vehicular networks. In Network Protocols, 2009. ICNP 2009. 17th IEEE International Conference on, pages 324–333, 2009.
    [17] John R. McLean. Two-lane Highway Traffic Operations: Theory and Practice. Gordon and Breach Science Publishers Ltd, 1 edition, 1989.
    [18] Zhang Wuxiong et al. Ng, Seh Chun. Analysis of Access and Connectivity Probabilities in Infrastructure-Based Vehicular Relay Networks. In Wireless Communications and Networking Conference (WCNC), 2010 IEEE, pages 1–6, 2010.
    [19] J. Ott and D. Kutscher. Drive-thru Internet: IEEE 802.11b for ”automobile” users. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, volume 1, page 373, 2004.
    [20] Firoiu V. et al. Padhye, J. Modeling TCP Reno performance: a simple model and its empirical validation. Networking, IEEE/ACM Transactions on, 8(2):133–145, 2000.
    [21] S. M. Ross. Introduction to Probability Models. Academic Press, 2009. [22] G. Forte; Anshuman Singh Rawat; Henning Schulzrinne Sangho, Shin; Andrea. ReducingMAC layer handoff latency in IEEE 802.11 wireless LANs. In Proceedings of the second international workshop on Mobility management & wireless access protocols, pages 19–26, Philadelphia, PA, USA, 2004. ACM.
    [23] Deng Shuang. Empirical model ofWWWdocument arrivals at access link. In Communications, 1996. ICC 96, Conference Record, Converging Technologies for Tomorrow’s Applications. 1996 IEEE International Conference on, volume 3, pages
    1797–1802 vol.3, 1996.
    [24] Wisitpongphan N. Tonguz, O. K. and Bai Fan. DV-CAST: A distributed vehicular broadcast protocol for vehicular ad hoc networks. Wireless Communications, IEEE, 17(2):47–57, 2010.
    [25] Wing Cheong Lau et al. Wee Lum, Tan. Analytical Models and Performance Evaluation of Drive-thru Internet Systems. Selected Areas in Communications, IEEE Journal on, 29(1):207–222, 2011.
    [26] H. Xie and D. J. Goodman. Mobility models and biased sampling problem. In Universal Personal Communications, 1993. Personal Communications: Gateway to the 21st Century. Conference Record., 2nd International Conference on, volume 2, pages 803–807 vol.2, 1993.
    [27] Zhixue Lu et al. Zizhan, Zheng. Maximizing the Contact Opportunity for Vehicular Internet Access. In INFOCOM, 2010 Proceedings IEEE, pages 1–9, 2010.

    下載圖示 校內:2015-08-03公開
    校外:立即公開
    QR CODE