簡易檢索 / 詳目顯示

研究生: 林洺安
Lin, Ming-An
論文名稱: 直接加速度回授與加速度積分回授於堆疊式雙軸撓性定位平台上之振動控制
Vibration Control of a Cascaded Tow-Degree-of-Freedom Precision Positioning Stage Using Direct Acceleration and Integrated Acceleration Feedback Schemes
指導教授: 陳國聲
Chen, Kuo-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 195
中文關鍵詞: 微機電加速規加速度積分相位補償器直接加速度回授撓性定位平台
外文關鍵詞: MEMS Accelerometer, Phase Shifter, Integrated Acceleration Feedback Control, Direct Acceleration Feedback Control, Compliant Positioning Stage
相關次數: 點閱:154下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自動化光學檢測系統運作時,為了達到更高的檢測效率,我們希望能盡量快速的啟動與停止龍門機台,使顯微鏡組能更加快速的到達目標位置。然而快速的啟動停止會引起鏡頭與待測面板間的相對運動導致所擷取的影像模糊。過去所提出的主動減振策略多以位移感測器量測位移作位移回授為主。然後在這樣的裝置下我們沒有辦法找到不受龍門機台影響的感測器安裝位置,感測器與待測平台之間相對運動的產生會影響定位結果。過去學長提出在精密定位平台及待測平台上各加裝一加速規,利用加速度積分成位移來計算兩者之間的相對運動。然而該控制策略因為加速規精度的關係未能有效應用於精密定位平台上,且加速度積分亦有相位偏移現象待解決。因此,本文對加速度經由防飄移積分器積分後的訊號進行相位補償以解決其相位偏移問題,使積分後位移訊號更貼近平台實際運動情形。同時發展不需經過積分程序的直接加速度回授控制策略。在實驗平台方面,我們以ABS材料搭配塑膠3D列印技術做為金屬3D列印定位平台的原型,建立了可以使加速規有效運作的雙軸撓性定位平台,並以此做為前述兩種控制策略的測試平台。我們對其上下平台分別設計加速度訊號積分搭配三種不同的相位補償策略的回授控制系統以及直接加速度回授控制系統,模擬其實驗結果,並進行單軸的弦波追蹤、雙軸的圓軌跡追蹤並討論其控制性能。本文中我們利用成本低且設置簡單的微機電加速規做為主感測器,尋求在未能有效安裝位移感測器時,以加速規量得加速度經防飄移積分及相位補償器後之積分器結果進行位移回授,以及直接利用加速度的直接加速度回授,建立了以加速規為主感測器的主動減振策略。

    Active vibration control has been widely applied in precision mechanics. Using accelerometer instead of displacement sensor as main sensor has been brought up to the positioning stage when it’s hard to find a reference place to mount the displacement sensor. However, the phase displacement of integrated acceleration introduced by integrator might collapse the feedback control and this approach hasn’t been applied to positioning stage yet. In this thesis, we designed long-stroke compliant positioning stage that allow MEMS accelerometer able to measure reasonable acceleration signals. We processed the acceleration signals with phase shifter and filter to allow signals be used in feedback control. By integrating above results, we successfully practiced both integrated acceleration and direct acceleration feedback schemes on positioning stage. Feedback control schemes have been practiced in 1- and 2-D.O.F. stage. Both single and multiple frequencies signal have been taken as input signal. Through these experiment results, we hope to offer references for using MEMS accelerometer as main sensor for active vibration control and furthermore allow these concepts been applied on precision machine.

    摘要 I Abstract II Extend Abstract III 致謝 XI 目錄 XIII 表目錄 XVIII 圖目錄 XX 符號說明 XXX 縮寫說明 XXXIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 1.3 文獻回顧 8 1.3.1 精密定位平台設計與控制 8 1.3.2 本實驗室振動控制相關研究 10 1.4 研究方法 13 1.4.1 加速度訊號處理 14 1.4.2 平台設計與實現 14 1.4.3 控制器設計 14 1.4.4 精密定位平台定位控制實驗 15 1.5 全文架構 16 第二章 研究背景介紹 18 2.1 本章介紹 18 2.2 微機電加速規及加速度訊號處理 19 2.2.1 微機電加速規 19 2.2.2 加速度積分 21 2.2.3 加速度訊號濾波 22 2.3 加速度回授控制相關研究 23 2.4 撓性定位平台介紹 26 2.5 硬體介紹與相關應用 28 2.5.1 DS1104 R&D 控制板 28 2.5.2 電感式位移感測器 29 2.6 控制法則及相關應用 30 2.7 本章結論 31 第三章 加速度訊號處理模擬與實驗 32 3.1 本章介紹 32 3.2 加速度積分訊號處理 34 3.2.1 加速度積分的重要性及其問題 34 3.2.2 實驗架構 35 3.2.3 防漂移積分器的相位漂移現象 39 3.2.4 相位補償器的設計 43 3.3 加速度積分回授於雙鉗樑系統上的弦波追蹤實驗 45 3.3.1 實驗設計與目標 45 3.3.2 實驗架構 45 3.3.3 雙鉗樑系統上的開路弦波追蹤 48 3.3.4 雙鉗樑系統上的閉路弦波追蹤 50 3.4 加速度訊號處理與控制器設計 56 3.4.1 加速度訊號處理 56 3.4.2 控制器設計 58 3.5 直接加速度回授於雙鉗樑系統上的弦波追蹤實驗 59 3.6 本章結論 61 第四章 堆疊式雙軸撓性平台之設計、分析與製作 62 4.1 本章介紹 62 4.2 定位系統概念設計 65 4.3 定位平台致動器、感測器分析 69 4.3.1 下平台致動器、感測器的選擇與分析 69 4.3.2 上平台致動器的選擇 72 4.3.3 上平台感測器的選擇與分析 74 4.4 定位平台機械設計 77 4.4.1 實體平台設計 77 4.4.2 平台理論分析 80 4.4.3 平台有限元素分析法分析 82 4.5 平台動態測試與模型建立 86 4.5.1 實驗架構 86 4.5.2 平台靜態性能實驗 89 4.5.3 平台動態性能測試 91 4.5.4 系統模型之參數量測 95 4.6 本章結論 100 第五章 加速度積分回授於雙軸撓性平台定位控制之模擬與實驗 101 5.1 本章介紹 101 5.2 控制器設計介紹 103 5.2.1 PID控制於加速度積分回授上的應用 103 5.2.2 相位補償器 105 5.3 下平台加速度積分回授定位控制之模擬與實驗 107 5.3.1 下平台控制器設計 107 5.3.2 下平台加速度積分弦波追蹤實驗 111 5.3.3 下平台加速度積分弦波追蹤實驗的性能分析 115 5.4 上平台加速度積分回授定位控制之模擬與實驗 120 5.4.1 上平台控制器設計 120 5.4.2 上平台加速度積分弦波追蹤實驗 123 5.4.3 上平台加速度積分弦波追蹤實驗的性能分析 128 5.5 雙軸加速度積分回授圓形軌跡追蹤定位控制之模擬與實驗 132 5.6 本章結論 137 第六章 直接加速度回授於雙軸撓性平台定位控制之模擬與實驗 139 6.1 本章介紹 139 6.2 控制器設計介紹 141 6.2.1 PID控制理論在直接加速度回授上的限制 141 6.2.2 帶拒濾波器與帶通濾波器 142 6.2.3 PD控制搭配帶拒濾波器與帶通濾波器 142 6.3 下平台直接加速度回授定位控制之模擬與實驗 144 6.3.1 下平台控制器設計 144 6.3.2 下平台加速度弦波追蹤實驗 146 6.3.3 下平台加速度弦波追蹤實驗的性能分析 149 6.4 上平台直接加速度回授定位控制之模擬與實驗 152 6.4.1 上平台控制器設計 152 6.4.2 上平台加速度弦波追蹤實驗 154 6.4.3 上平台加速度弦波追蹤實驗的性能分析 157 6.5 雙軸直接加速度回授圓形軌跡追蹤定位控制之模擬與實驗 161 6.6 本章結論 165 第七章 研究結果與討論 166 7.1 本章介紹 166 7.2 全文歸納 168 7.3 加速度積分回授搭配相位補償策略之討論 170 7.4 直接加速度回授搭配濾波器之討論 172 7.5 未來工作與展望 173 7.5.1 近程目標 173 7.5.2 中程目標 174 7.5.3 遠程目標 175 7.6 本章結論 176 第八章 結論與未來展望 177 8.1 本文結論 177 8.2 本文貢獻 179 8.3 未來工作與展望 180 參考文獻 181 附錄 184 附錄A 微機電加速規ADXL-327 184 附錄B 實驗程式 185 B.1下平台加速度積分回授實驗程式 185 B.2上平台加速度積分回授實驗程式 186 B.3雙軸加速度積分回授實驗程式 187 B.4下平台直接加速度回授實驗程式 188 B.5上平台直接加速度回授實驗程式 189 B.6雙軸直接加速度回授實驗程式 190 附錄C 模擬程式 191 C.1下平台加速度積分回授模擬程式 191 C.2上平台加速度積分回授模擬程式 192 C.3下平台直接加速度回授模擬程式 193 C.4上平台直接加速度回授模擬程式 194 自述 195

    [1] T. H. Cheng and I. K. Oh, "Vibration Suppression of Flexible Beam Using Electromagnetic Shunt Damper," IEEE Transactions on Magnetics, vol. 45, pp. 2758-2761, 2009.
    [2] 王維志, "具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2010.
    [3] 李哲維, "堆疊式壓電雙軸精密定位平台之設計、分析與控制," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2012.
    [4] 李宏仁, "微米級定位平台振動主動控制之研究," 碩士, 奈米科技研究所, 南台科技大學, 台南市, 2008.
    [5] 呂毓笙, "加速度回授於撓性結構之振動控制," 碩士, 機械工程學系, 國立成功大學, 台南市, 2014.
    [6] T. Mitsuru, "The Dynamic Properties of a Monolithic Mechanism with Notch Flexure Hinges for Precision Control of Orientation and Position," Japanese Journal of Applied Physics, vol. 22, p. 193, 1983.
    [7] J. Matey, R. Crandall, B. Brycki, and G. Briggs, "Bimorph‐driven x–y–z translation stage for scanned image microscopy," Review of scientific instruments, vol. 58, pp. 567-570, 1987.
    [8] 張所鋐, "六自由度超精密奈米定位平台研製 (2/2)," 2002.
    [9] K.-S. Low and M.-T. Keck, "Advanced precision linear stage for industrial automation applications," IEEE Transactions on Instrumentation and Measurement, vol. 52, pp. 785-789, 2003.
    [10] A. Balasubramanian, M. B. Jun, R. E. DeVor, and S. G. Kapoor, "A submicron multiaxis positioning stage for micro-and nanoscale manufacturing processes," Journal of Manufacturing Science and Engineering, vol. 130, p. 031112, 2008.
    [11] K.-S. Chen, D. Trumper, and S. Smith, "Design and control for an electromagnetically driven X–Y–θ stage," Precision Engineering, vol. 26, pp. 355-369, 2002.
    [12] 郭豪翔, "結合撓性結構與音圈馬達之振動獵能與控制研究," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2013.
    [13] N. Yazdi, F. Ayazi, and K. Najafi, "Micromachined inertial sensors," Proceedings of the IEEE, vol. 86, pp. 1640-1659, 1998.
    [14] H. P. Gavin, R. Morales, and K. Reilly, "Drift-free integrators," Review of scientific instruments, vol. 69, pp. 2171-2175, 1998.
    [15] 林韋澄, "慣性導航之訊號飄移抑制方法設計與實驗分析," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2009.
    [16] A. Prodic and D. Maksimovic, "Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters," in Computers in Power Electronics, 2002. Proceedings. 2002 IEEE Workshop on, 2002, pp. 18-22.
    [17] B. De Jager, "Acceleration assisted tracking control," IEEE Control Systems, vol. 14, pp. 20-27, 1994.
    [18] E. Dumetz, J.-Y. Dieulot, P.-J. Barre, F. Colas, and T. Delplace, "Control of an industrial robot using acceleration feedback," Journal of Intelligent and Robotic Systems, vol. 46, pp. 111-128, 2006.
    [19] Y. Hori, "Disturbance suppression on an acceleration control type DC servo system," in Power Electronics Specialists Conference, 1988. PESC'88 Record., 19th Annual IEEE, 1988, pp. 222-229.
    [20] P. B. Schmidt and R. D. Lorenz, "Design principles and implementation of acceleration feedback to improve performance of DC drives," IEEE Transactions on Industry Applications, vol. 28, pp. 594-599, 1992.
    [21] J. Han, Y. Wang, D. Tan, and W. Xu, "Acceleration feedback control for direct-drive motor system," in Intelligent Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on, 2000, pp. 1068-1074.
    [22] 趙銘靖, "應用PID控制於單軸撓性壓電定位平台之振動控制研究," 碩士, 機械工程系, 南台科技大學, 台南市.
    [23] B.-J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, "Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges," IEEE Transactions on Robotics and Automation, vol. 19, pp. 604-612, 2003.
    [24] 鄧諺舉, "新型橡膠軸承一維定位平台之分析、設計、控制," 碩士, 機械工程學系, 國立成功大學, 台南市, 2015.
    [25] S. T. Smith, Foundations of ultra-precision mechanism design vol. 2: CRC Press, 2003.
    [26] S. S. Rao and F. F. Yap, Mechanical vibrations vol. 4: Addison-Wesley New York, 1995.
    [27] B. Schiffman and G. Matthaei, "Exact design of band-stop microwave filters," IEEE Transactions on Microwave Theory and Techniques, vol. 12, pp. 6-15, 1964.
    [28] P. Cortés, J. Rodríguez, D. E. Quevedo, and C. Silva, "Predictive current control strategy with imposed load current spectrum," IEEE Transactions on Power Electronics, vol. 23, pp. 612-618, 2008

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE