| 研究生: |
唐筱婷 Tang, Hsiao-Ting |
|---|---|
| 論文名稱: |
真空氣氛下燒結透光氧化鋁陶瓷 Preparation of Translucent Polycrystalline Alumina by Vacuum Sintering |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 真空燒結 、多晶氧化鋁 、注漿成形 、透光 、機械性質 |
| 外文關鍵詞: | vacuum sintering, polycrystalline alumina, slip casting, translucent, mechanical properties |
| 相關次數: | 點閱:122 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用注漿成形法製備Mg2+ 添加量0-2000 ppm之多晶氧化鋁生胚,真空氣氛下以不同條件燒結,探討其微結構、透光率、硬度及破裂韌性。漿料以去離子水當作溶劑混合氧化鋁粉末,分別添加0-2000 ppm Mg2+,並加入分散劑聚丙烯酸銨改善漿料黏度,利用釔安定氧化鋯磨球球磨,提高氧化鋁粉末分散性並降低顆粒凝聚情形,得到流動性佳之漿料,注入石膏模製成生胚,經過 800oC/12 h 預燒結,去除分散劑並消除細小氧化鋁顆粒,生胚相對密度約62-66%。
所得生胚在高溫爐A、B真空氣氛下以不同條件進行燒結,A、B高溫爐皆為中度真空範圍 (1-10-3 mbar),但因爐體大小差異,高溫爐A之爐體較大,真空度較差,高溫爐B之爐體較小,真空度較好,因此生胚燒結後結果不同。
實驗結果顯示,添加1000 ppm Mg2+ 之樣品以高溫爐A 1700oC 燒結能達到相對密度99.4%,高溫伴隨晶粒粗化,晶粒尺寸17.3 μm,本實驗所得最佳之直線透光率6.93%,硬度值16.26 GPa、破裂韌性3.25 MPa/m1/2。
高溫爐B之樣品經過1700oC燒結,純氧化鋁燒結體密度僅96.7%,添加Mg2+ 的燒結體密度提高至98.8%,純氧化鋁樣品晶粒尺寸為33.5 μm,添加Mg2+ 能夠抑制晶粒成長,晶粒縮減至10-12 μm,但當添加量由500 ppm增加至 2000 ppm抑制晶粒成長的效果並沒有明顯增加,因此添加Mg2+ 於結構當中,可同時抑制晶粒成長並在較低燒結溫度得到較緻密的燒結體,而樣品直線透光率因孔隙過多而低至2%,硬度值17-18 GPa、破裂韌性3.5-4 MPa/m1/2。
The transmittance and mechanical properties of polycrystalline alumina ceramic are related to its density, porosity, and grain size. Green bodies with high relative density and high uniformity are required for polycrystalline alumina ceramic. In this study, polycrystalline alumina green bodies doped with 0–2000 ppm Mg2+ were produced by slip casting. A dispersant, PAA-NH4, was added in order to achieve low viscosity. Pre-heating at 800C for 12 h eliminated fine particles and decomposed magnesium nitrate and the dispersant. The relative density of the green bodies was 62–66%. Sintering was done in vacuum at various temperatures, holding times, and heating rates in furnaces A and B. The results show that the bodies with 1000 ppm Mg2+ has high transmittance after sintering at 1700C for 1 h in furnace A. The relative density reached 99.4% and the real in-line transmission was 6.93%. The hardness and fracture toughness were 16.26 GPa and 3.25 MPa × m1/2, respectively. Sintering in vacuum at 1700°C for 1 h was done in furnace B. Doping of alumina with Mg2+ raised its density to 98.8% (the density of pure alumina is only 96.7%). Doping alumina with Mg2+ inhibited its grain growth, resulting in its densification at low temperature and its improvement of mechanical properties. The real in-line transmission was 2% because of its numerous pores, and its hardness and fracture toughness were 17–18 GPa and 3.25 MPa × m1/2, respectively.
1.Y. Kim and T. Hsu, "A reflection electron-microscopic (REM) study of alpha-Al2O3(0001) surfaces," Surface Science, vol. 258, no. 1-3, pp. 131-146, Nov 1991.
2.N. Miyahara, K. Yamaishi, Y. Mutoh, K. Uematsu, and M. Inoue, "Effect of grain-size on strength and fracture-toughness in alumina,"JSME International Journal Series A, Mechanics and Material Engineering, vol. 37, no. 3, pp. 231-237, Jul 1994.
3.A. Krell, J. Klimke, and T. Hutzler, "Advanced spinel and sub-μm Al2O3 for transparent armour applications," Journal of the European Ceramic Society, vol. 29, no. 2, pp. 275-281, Jan 2009.
4.A. Krell, T. Hutzler, and J. Klimke, "Transmission physics and consequences for materials selection, manufacturing, and applications," Journal of the European Ceramic Society, vol. 29, no. 2, pp. 207-221, Jan 2009.
5.M. Stuer, Z. Zhao, U. Aschauer, and P. Bowen, "Transparent polycrystalline alumina using spark plasma sintering: Effect of Mg, Y and La doping,"Journal of the European Ceramic Society, vol. 30, no. 6, pp. 1335-1343, Apr 2010.
6.I. Yamashita, H. Nagayama, and K. Tsukuma, "Transmission properties of translucent polycrystalline alumina," Journal of the American Ceramic Society, vol. 91, no. 8, pp. 2611-2616, Aug 2008.
7.Y. T. O, J. B. Koo, K. J. Hong, J. S. Park, and D. C. Shin, "Effect of grain size on transmittance and mechanical strength of sintered alumina," Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, vol. 374, no. 1-2, pp. 191-195, Jun 2004.
8.H. S. Kim, S. T. Oh, and Y. D. Kim, "Effects of the two-step sintering process on the optical transmittance and mechanical strength of polycrystalline alumina ceramics," Ceramics International, vol. 40, no. 9, pp. 14471-14475, Nov 2014.
9.G. Mata-Osoro, J. S. Moya, and C. Pecharroman, "Transparent alumina by vacuum sintering," Journal of the European Ceramic Society, vol. 32, no. 11, pp. 2925-2933, Aug 2012.
10.A. Muchtar and L. C. Lim, "Indentation fracture toughness of high purity submicron alumina," Acta Materialia, vol. 46, no. 5, pp. 1683-1690, Mar 1998.
11.R. W. Rice, S. W. Freiman, and P. F. Becher, "Grain-size dependence of fracture energy in ceramics: I, experiment," Journal of the American Ceramic Society, vol. 64, no. 6, pp. 345-350, 1981.
12.I. MacLaren, R. M. Cannon, M. A. Gülgün, and M. Pühle, "Abnormal grain growth in alumina: Synergistic effects of yttria and silica,"Journal of the American Ceramic Society, vol. 86, no. 4, pp. 650-659, Apr 2003.
13.K. A. Berry and M. P. Harmer, "Effect of MgO solute on microstructure development in Al2O3," Journal of the American Ceramic Society, vol. 69, no. 2, pp. 143-149, Feb 1986.
14.S. I. Bae and S. Baik, "Critical concentration of MgO for the prevention of abnormal grain-growth in alumina," Journal of the American Ceramic Society, vol. 77, no. 10, pp. 2499-2504, Oct 1994.
15.H. J. Wang, W. Li, C. Ternstrom, H. X. Lin, and J. L. Shi, "Effect of Mg doping on microwave dielectric properties of translucent polycrystalline alumina ceramic," Ceramics International, vol. 39, no. 2, pp. 1583-1586, Mar 2013.
16.L. Miller, A. Avishai, and W. D. Kaplan, "Solubility limit of MgO in Al2O3 at 1600 degrees C," Journal of the American Ceramic Society, vol. 89, no. 1, pp. 350-353, Jan 2006.
17.A. Krell and J. Klimke, "Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina," Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1985-1992, Jun 2006.
18.Y. Hotta, T. Banno, and K. Oda, "Characteristics of translucent alumina produced by slip casting method using gypsum mold," Journal of Materials Science, vol. 37, no. 4, pp. 855-863, Feb 2002.
19.LIU Bing, PENG Chao-qun, Wang Richu, Wang Xiaofeng, Wang Zhiyong, and LI Tingting, "Influence factors for stability behavior of Al2O3 suspension," The Chinese Journal of Nonferrous Metal, vol. 22, no. 10, Oct 2012.
20.R. L. Coble, "Sintering crystalline solids .II. experimental test of duffusion models in powder compacts," Journal of Applied Physics, vol. 32, no. 5, 21.R. G. Munro, "Evaluated material properties for a sintered alpha-alumina," Journal of the American Ceramic Society, vol. 80, no. 8, pp. 1919-1928, Aug 1997.
22.F. J. T. Lin and L. C. DeJonghe, "Microstructure refinement of sintered alumina by a two-step sintering technique," Journal of the American Ceramic Society, vol. 80, no. 9, pp. 2269-2277, Sep 1997.
23.D. Galusek, J. Sedlacek, J. Chovanec, and M. Michalkova, "The influence of MgO, Y2O3 and ZrO2 additions on densification and grain growth of submicrometer alumina sintered by SPS and HIP," Ceramics International, vol. 41, no. 8, pp. 9692-9700, Sep 2015.
24.B. N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, "Microstructure and optical properties of transparent alumina," Acta Material, vol. 57, no. 5, pp. 1319-1326, Mar 2009.
25.A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. van Bruggen, and R. Apetz, "Transparent sintered corundum with high hardness and strength, "Journal of the American Ceramic Society, vol. 86, no. 1, pp. 12-18, Jan 2003.
26.C. Promdej, V. Pavarajarn, S. Wada, T. Wasanapiarnpong, and T. Charinpanitkul, "Effect of hot isostatically pressed sintering on microstructure of translucent alumina compact," Current Applied Physics, 27.R. L. Coble, "Sintering alumina-effect of atmospheres," Journal of the American Ceramic Society, vol. 45, no. 3, pp. 123-127, 1962.
28.G. C. Wei and W. H. Rhodes, "Sintering of translucent alumina in a nitrogen-hydrogen gas atmosphere," Journal of the American Ceramic Society, vol. 83, no. 7, pp. 1641-1648, Jul 2000.
29.H. H. Zhang, Y. L. Xu, B. Wang, X. Zhang, J. F. Yang, and K. Niihara, "Effects of heating rate on the microstructure and mechanical properties of rapid vacuum sintered translucent alumina," Ceramics International, vol. 41, no. 9, pp. 12499-12503, Nov 2015.
30.K. M. Liang, G. Orange, and G. Fantozzi, "Evaluation by indentation of fracture-toughness of ceramic materials," Journal of Materials Science, vol. 25, no. 1A, pp. 207-214, Jan 1990.
31.X. J. Mao, S. W. Wang, S. Shimai, and J. K. Guo, "Transparent Polycrystalline Alumina Ceramics with Orientated Optical Axes," Journal of the American Ceramic Society, vol. 91, no. 10, pp. 3431-3433, Oct 2008.
32.http://www.sumitomo-chem.co.jp/products/docs/en_a06008.pdf
33.賴岳淵,以注漿成形法製備透光氧化鋁陶瓷,國立成功大學資源工程學系,碩士論文,中華民國一零五年。
34.王志仁,微晶粒氧化鋁陶瓷體之製備與機械性質,國立成功大學資源工程學系,博士論文,中華民國九十七年。
35.https://www.corning.com/content/dam/corning/microsites/csm/gorillaglass/PI_Sheets/Corning%20Gorilla%20Glass%205%20PI%20Sheet.pdf