簡易檢索 / 詳目顯示

研究生: 郭昱廷
Kuo, Yu-Ting
論文名稱: 探討A20蛋白在胃癌進程中的作用
The role of A20 in gastric cancer progression
指導教授: 沈延盛
Shan, Yan-Shen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 141
中文關鍵詞: 鐘擺化療法胃癌腫瘤壞死因子 α 誘導蛋白 3(TNFAIP3)A20胱天蛋白酶 8自嗜相關蛋白 3微管相關 1A/1B-輕鏈 3癌症轉移卵巢腫瘤(OTU)功能結構域緊密蛋白 Occludin轉化蛋白 RhoA
外文關鍵詞: metronomic chemotherapy, gastric cancer, tumor necrosis factor α induced protein 3, A20, caspase 8, ATG3, LC3, metastasis, OTU domain, Occludin, RhoA
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 節拍化療 (MC) 是利用頻繁、低劑量的化療用於改善療效,但這類化療方法最終也會使癌細胞發展出化療抗藥性。慢性發炎是胃癌 (GC) 發展出化療抗性的重要危險因子。透過 mRNA 微陣列分析,我們發現了 TNFAIP3 (A20),它與低度發炎和 GC 化療抗藥性有關,然而 A20 調節胃癌進展的分子機制仍不清楚。本研究旨在確定 A20 在胃癌中的分子機制與臨床意義。我們發現 A20 的表現量分別在順鉑 (CDDP)、氟尿嘧啶 (5-FU) 和紫杉醇 (PTX) 的鐘擺療法耐藥性 AGS 胃癌細胞中增加;增加或減少 A20 影響了胃癌細胞的幹細胞特性與鐘擺化療法的抗藥性,此外我們還發現A20透過增強自嗜作用胃癌細胞在鐘擺化療法後的幹細胞特性。我們指出 A20 通過抑制 caspase 8 的活化來促進 ATG3 介導的自嗜作用。在 A20 的卵巢腫瘤 (OTU) 結構域中的功能喪失突變降低了 pro-caspase 8、ATG3 和 LC3 II 的表達,顯示 A20 調控的鐘擺化療抗藥性依賴於其 OTU 功能結構域。此外,我們指出 A20 促進胃癌細胞的遷移與轉移,在臨床相關性研究中,A20 的高表達與胃癌的侵略性相關,並被確認是胃癌的獨立風險因子,可用於預測患者的臨床結果和預後,機轉上,A20 造成了細胞緊密蛋白 Occludin 的丟失。實驗數據顯示 A20 通過其 OTU 結構域誘導 Occludin 內吞和溶酶體降解。使用 pull-down assay 的實驗顯示出 AO/OTUmut 影響 A20 與 RhoA 在 AGS 細胞中的結合,表明 A20 OTU 結構域活性對於 A20 與 RhoA 結合誘導 Occludin 的降解至關重要。總之,我們的研究表明A20通過胃癌在鐘擺化療中限制 caspase 8 的活化,進而穩定 ATG3 的表達,從而促進了幹細胞化與鐘擺化療抗藥性的形成。而 A20 透過增加 RhoA 的穩定性與活化,導致 Occludin 降解從而促進了胃癌細胞的轉移,是導致胃癌的不良預後的風險因素。我們的研究強調針對 A20 治療的重要性,可降低胃癌鐘擺化療的抗藥性與轉移,從而使患者的預後得到改善。

    Metronomic chemotherapy (MC) employs frequent, low-dose chemotherapy to improve therapeutic efficacy; however, this approach can eventually lead to the development of chemoresistance in cancer cells. Chronic inflammation is a significant risk factor for chemoresistance in gastric cancer (GC). Through mRNA microarray analyses, we identified TNFAIP3 (A20), which is associated with low-grade inflammation and chemoresistance in GC. This study aimed to determine the molecular mechanisms and clinical significance of A20 in GC. The results showed that A20 expression contributed to the growth of MC-resistant cells. Manipulation of A20 expression affected changes in stemness properties and MC resistance in GC cells. Furthermore, we found that A20 facilitated GC stemness by promoting autophagy after MC. We revealed that A20 facilitated ATG3-mediated autophagy by inhibiting caspase 8. A loss-of-function mutation in the OTU domain of A20 reduced the expression of pro-caspase 8, ATG3, and LC3 II in AGS cells, indicating that A20-mediated MC resistance is dependent on its OTU domain. Moreover, we indicated that A20 promotes migration and metastasis of GC. In our clinical correlation study, high expression of A20 was associated with aggressive features and identified as a potential independent risk factor for GC patients. Mechanistically, A20 promoted the loss of Occludin tight junctions in GC cells. Furthermore, A20 was found to induce Occludin endocytosis and lysosomal degradation via its OTU domain. Using a pull-down assay, we identified that the migration-related protein RhoA interacts with A20. Additionally, an in situ proximity ligation assay showed that AO/OTUmut impaired the binding of A20 and RhoA in AGS cells, suggesting that the OTU domain activity of A20 is required for its binding with RhoA to induce Occludin degradation. In conclusion, our research demonstrates that A20 limits the activation of caspase 8 in GC during MC, which in turn stabilizes the expression of ATG3, promoting stemness and the development of chemoresistance. Furthermore, A20 increases the stability and activation of RhoA, resulting in the degradation of Occludin and promoting the metastasis of GC cells. This suggests that A20 is an independent risk factor for poor prognosis in GC. Our study highlights that A20 represents a novel therapeutic target for preventing GC metastasis and overcoming chemoresistance to MC, thereby improving patient outcomes.

    中文摘要 I Abstract III 誌謝 V Abbreviations list VI Content VII 1. Chapter 1: Introduction 1 1.1. Gastric cancer 1 1.2. GC progression and metastasis 2 1.3. Chemotherapy treatment for GC 3 1.4. Metronomic chemotherapy (MC) 4 1.5. Chronic inflammation exerts malignant behaviors in GC 5 1.6. Tumor-associated macrophages (TAMs) orchestrate tumor-related inflammation in TME 5 1.7. The major factors contributing to chemoresistance: cancer stemness 6 1.8. Inflammation-driven cancer cells plasticity 7 1.9. Tumor necrosis factor alpha induced protein 3 (TNFAIP3, synonym A20) 8 1.10. The dual roles of A20 in cancer 9 1.11. Background and rationale 11 1.12. Hypothesis and specific aims 12 2. Chapter 2: Materials and Methods 13 2.1. Materials and reagents 13 2.2. Cell line and culture conditions 14 2.3. Co-culture system 15 2.4. MC treatment and MC-resistant cells establishment 15 2.5. Transformation and transfection A20 of in GC cell 16 2.6. TNF-α ELISA detection 17 2.7. Cell proliferation assay 17 2.8. Immunofluorescence staining 17 2.9. Colony formation assay (CFA) 18 2.10. Sphere formation assay (SFA) 18 2.11. Real-time PCR 18 2.12. Western blotting 18 2.13. Flow cytometry analysis 19 2.14. Apoptosis cell detection 19 2.15. Animal model 20 2.16. Immunoprecipitation (IP) assay and IP-MS 21 2.17. ATG3 cleavage assay 21 2.18. Transwell migration assay 22 2.19. Wound healing assay 22 2.20. Patients and specimens 23 2.21. Immunohistochemistry 23 2.22. Protein degradation analyses 24 2.23. Statistical analysis 24 3. Chapter 3: Results 26 3.1. A20 is upregulated in MC-resistant GC cells 26 3.2. A20 promotes MC-chemoresistance and reduces chemo-drugs sensitivity in GC cells 28 3.3. A20 contributes to GC stemness in GC cells during MC 30 3.4. A20-mediated autophagosome formation promotes resistance of GC cells to MC 30 3.5. A20 induces autophagy by upregulating and maintaining ATG3 expression in GC cells 31 3.6. A20 maintains ATG3 expression by blocking the caspase 8 cascade in GC cells during MC 32 3.7. A20-OTU domain regulates ATG3 expression via terminating of caspase 8 activation 33 3.8. A20 promotes GC cell migration ability to metastases 34 3.9. A20 is upregulated in the tumor tissue of GC 35 3.10. High A20 protein expression is associated with poor survival of GC patient 35 3.11. High A20 expression correlates to invasiveness and progression of GC 36 3.12. A20 promotes downregulation of tight junction protein occludin in GC 37 3.13. A20 induces Occludin degradation via endocytosis and lysosome action 38 3.14. A20 OTU domain mediates endocytosis and lysosomal degradation of Occludin 39 3.15. A20 OTU domain stabilizes RhoA expression to promote Occludin degradation 40 3.16. RhoA/ROCK2 signaling involves in A20-induced Occludin degradation 41 3.17. A20 OTU domain is critical for the interaction between A20 and RhoA 41 4. Chapter 4: Discussion and conclusion 44 5. Reference 53 Figures and Tables 72 Table 1. The primers for A20 mutagenesis 72 Table 2. The primers for Sanger sequencing of A20 73 Table 3. antibody list 74 Table 4 The primers for real-time PCR 75 Table 5 Demographic characteristics of GC patients in the full analysis set 76 Table 6 Correlation between A20 expression and clinicopathological profiles 77 Table 7 Univariate and multivariate analyses of survival in 122 GC patients. 78 Figure 1. A20 (TNFAIP3) expression is upregulated and associated with the inflammatory response after co-culture with U937 cells or chemodrug treatments 79 Figure 2. The upregulation of A20 is confirmed by Western blotting and quantitative PCR analysis 80 Figure 3. TNF-α facilitates MC resistance by upregulating A20 expression in GC 81 Figure 4. To establish chemoresistant AGS cells through MC treatments 82 Figure 5. TNF-α releasing and A20 expression upregulates by metronomic chemotherapy treatments 83 Figure 6. A20 contributes to cell growth in MC-resistant GC cell lines 84 Figure 7. Construction of A20 overexpression and knockdown GC cell lines 85 Figure 8. Manipulation of A20 expression affects the resistance of GC cells to chemotherapy 86 Figure 9. Knockdown of A20 inhibits tumor growth in both parental and 5-FU-MC-resistant MKN45 cells 87 Figure 10. A20 sustains cell proliferation in AGS cells during MC treatment 88 Figure 11. A20 reduces apoptotic cells in AGS cells during MC treatment 89 Figure 12. The tumoricidal effects of MTD and MC treatments in GC cell lines 90 Figure 13. A20 facilitates the stemness to promote resistance of GC cells to MC 91 Figure 14. A20 contributes to sphere forming ability and stemness in GC cells 92 Figure 15. A20 expression enhances autophagy formation in parental and resistant GC cell 93 Figure 16. A20 (red) co-localizes with LC3 (green) in AGS cells 94 Figure 17. A20 promotes GC stemness by increasing autophagy during MC 95 Figure 18. A20 induces autophagy formation by increasing ATG3 expression in GC cells 96 Figure 19. A20 induces autophagy and sustains stemness markers via ATG3 in GC cells 98 Figure 20. Knockdown of ATG3 suppresses cell growth and inhibits A20-promoted chemoresistance in MC-resistant AGS cells 99 Figure 21. A20 inhibits caspase-8 to maintain ATG3 expression in GC 100 Figure 22. Inhibition of caspase 8 increases ATG3 expression, autophagy and cell viability 101 Figure 23. Constructs of mutations on key amino acids of different A20 domains 102 Figure 24. A20 inactivates and de-ubiquitinates caspase 8 via its OTU domain 103 Figure 25. The A20 OTU domain sustains ATG3 expression by deubiquitinating and inactivating caspase 8 to promote autophagy during MC 104 Figure 26. A20 increases the wound healing ability of GC cells 105 Figure 27. A20 induces the transwell migration activity of GC cells 106 Figure 28. A20 increases the risk of GC metastasis in vivo. 107 Figure 29. A20 knockdown inhibits lung- and liver-metastasis of MKN45 tumor in NOD-SCID orthotopic model. 108 Figure 30. A20 is highly expressed in human gastric cancer cells 109 Figure 31. High expression of A20 negatively correlates to GC patient’s survival 110 Figure 32. High A20 expression contributes to GC aggressiveness and metastasis 111 Figure 33. A20 expression is associated with EMT in AGS and MKN45 cells 112 Figure 34. A20 is involved in the downregulation and cytoplasmic localization of Occludin in GC 113 Figure 35. A20 promotes the migration of GC cells by inducing the loss of Occludin 114 Figure 36. A20 contributes to Occludin degradation in AGS and MKN45 cells 115 Figure 37. A20 increases Occludin degradation through the lysosome system in GC cells 116 Figure 38. The loss of OTU domain function in A20 decreases the migration ability of AGS cells 117 Figure 39. A20 regulates Occludin endocytosis and lysosomal-translocation via its OTU domaim 118 Figure 40. RhoA is the most potentially A20 interacting protein for Occludin degradation 119 Figure 41. A20 upregulates RhoA expression in GC cells 120 Figure 42. A20 promotes occludin degradation and migration ability by stabilizing RhoA expression 121 Figure 43. A20 promotes occludin endocytic lysosome degradation by activating RhoA/ROCK2 pathway in GC 122 Figure 44. A20 interacts with RhoA by its OTU functional domain 123 Figure 45. A20 OTU domain facilitates RhoA activation and occludin translocation 124 Figure 46. Schematic diagram depicts the mechanism underlying A20-promoted cancer metastasis and MC resistance in GC 125 Curriculum vitae 126

    1 Iwu CD, Iwu-Jaja CJ. Gastric Cancer Epidemiology: Current Trend and Future Direction. Hygiene. 2023; 3: 256-268. http://doi.org/doi.org/10.3390/hygiene3030019.
    2 Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020; 396: 635-648. http://doi.org/10.1016/S0140-6736(20)31288-5.
    3 Siegel RL, Miller KD. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72: 7-33. http://doi.org/10.3322/caac.21708.
    4 Van Cutsem E, Bang YJ, Feng-Yi F, Xu JM, Lee KW, Jiao SC, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer. 2015; 18: 476-484. http://doi.org/10.1007/s10120-014-0402-y.
    5 Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells. 2023; 12. http://doi.org/10.3390/cells12020243.
    6 Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021; 21: 162-180. http://doi.org/10.1038/s41568-020-00320-2.
    7 Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022; 15: 129. http://doi.org/10.1186/s13045-022-01347-8.
    8 Xu S, Zhan M, Wang J. Epithelial-to-mesenchymal transition in gallbladder cancer: from clinical evidence to cellular regulatory networks. Cell Death Discov. 2017; 3: 17069. http://doi.org/10.1038/cddiscovery.2017.69.
    9 Caron TJ, Scott KE, Fox JG, Hagen SJ. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol. 2015; 21: 11411-11427. http://doi.org/10.3748/wjg.v21.i40.11411.
    10 Martin TA, Jiang WG. Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta. 2009; 1788: 872-891. http://doi.org/10.1016/j.bbamem.2008.11.005.
    11 Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N. Epigenetic silencing of occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes. Cancer Res. 2006; 66: 9125-9133. http://doi.org/10.1158/0008-5472.CAN-06-1864.
    12 Wang M, Liu Y, Qian X, Wei N, Tang Y, Yang J. Downregulation of occludin affects the proliferation, apoptosis and metastatic properties of human lung carcinoma. Oncol Rep. 2018; 40: 454-462. http://doi.org/10.3892/or.2018.6408.
    13 Li Y, Yuan T, Zhang H, Liu S, Lun J, Guo J, et al. PHD3 inhibits colon cancer cell metastasis through the occludin-p38 pathway. Acta Biochim Biophys Sin (Shanghai). 2023; 55: 1749-1757. http://doi.org/10.3724/abbs.2023103.
    14 Wroblewski LE, Shen L, Ogden S, Romero-Gallo J, Lapierre LA, Israel DA, et al. Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology. 2009; 136: 236-246. http://doi.org/10.1053/j.gastro.2008.10.011.
    15 Sato Y, Okamoto K, Kida Y, Mitsui Y, Kawano Y, Sogabe M, et al. Overview of Chemotherapy for Gastric Cancer. J Clin Med. 2023; 12. http://doi.org/10.3390/jcm12041336.
    16 Azadeh P, Gholizadeh Pasha S, Yaghobi Joybari A, Abiar Z, Alahyari S, Taghizadeh-Hesary F. Survival Benefit of Induction Chemotherapy with Paclitaxel and Carboplatin Followed by Chemoradiation Versus Postoperative Treatment in Locally Advanced Gastric Cancer: A Retrospective Cohort Study. J Gastrointest Cancer. 2023. http://doi.org/10.1007/s12029-023-00991-8.
    17 Buckarma E, Thiels CA, Jin Z, Grotz TE. Cytoreduction and Hyperthermic Intraperitoneal Paclitaxel and Cisplatin for Gastric Cancer with Peritoneal Metastasis. Ann Surg Oncol. 2024; 31: 622-629. http://doi.org/10.1245/s10434-023-14379-2.
    18 Liu J, Yuan Q, Guo H, Guan H, Hong Z, Shang D. Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives. Biomed Pharmacother. 2024; 173: 116310. http://doi.org/10.1016/j.biopha.2024.116310.
    19 He S, Shen J, Hong L, Niu L, Niu D. Capecitabine "metronomic" chemotherapy for palliative treatment of elderly patients with advanced gastric cancer after fluoropyrimidine-based chemotherapy. Med Oncol. 2012; 29: 100-106. http://doi.org/10.1007/s12032-010-9791-x.
    20 Munoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel). 2021; 13: 5414. http://doi.org/10.3390/cancers13215414.
    21 Muraro E, Vinante L, Fratta E, Bearz A, Hofler D, Steffan A, et al. Metronomic Chemotherapy: Anti-Tumor Pathways and Combination with Immune Checkpoint Inhibitors. Cancers (Basel). 2023; 15: 2471. http://doi.org/10.3390/cancers15092471.
    22 Scagliotti A, Capizzi L, Cazzaniga ME, Ilari A, De Giorgi M, Cordani N, et al. Co-targeting triple-negative breast cancer cells and endothelial cells by metronomic chemotherapy inhibits cell regrowth and migration via downregulation of the FAK/VEGFR2/VEGF axis and autophagy/apoptosis activation. Front Oncol. 2022; 12: 998274. http://doi.org/10.3389/fonc.2022.998274.
    23 Liu H, Li M, Lin Y, You H, Kou J, Feng W. Dual‑directional effect of vinorelbine combined with cisplatin or fluorouracil on tumor growth and metastasis in metronomic chemotherapy in breast cancer. Int J Oncol. 2024; 64: 13. http://doi.org/10.3892/ijo.2023.5601.
    24 Marfels C, Hoehn M, Wagner E, Gunther M. Characterization of in vivo chemoresistant human hepatocellular carcinoma cells with transendothelial differentiation capacities. BMC Cancer. 2013; 13: 176. http://doi.org/10.1186/1471-2407-13-176.
    25 Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M, et al. Inflammation-Induced Tumorigenesis and Metastasis. Int J Mol Sci. 2021; 22. http://doi.org/10.3390/ijms22115421.
    26 O'Brien VP, Kang Y, Shenoy MK, Finak G, Young WC, Dubrulle J, et al. Single-cell Profiling Uncovers a Muc4-Expressing Metaplastic Gastric Cell Type Sustained by Helicobacter pylori-driven Inflammation. Cancer Res Commun. 2023; 3: 1756-1769. http://doi.org/10.1158/2767-9764.CRC-23-0142.
    27 Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol. 2022; 13: 1039260. http://doi.org/10.3389/fimmu.2022.1039260.
    28 Erturk K, Tastekin D, Serilmez M, Bilgin E, Bozbey HU, Vatansever S. Clinical significance of serum interleukin-29, interleukin-32, and tumor necrosis factor alpha levels in patients with gastric cancer. Tumour Biol. 2016; 37: 405-412. http://doi.org/10.1007/s13277-015-3829-9.
    29 Forones NM, Mandowsky SV, Lourenco LG. Serum levels of interleukin-2 and tumor necrosis factor-alpha correlate to tumor progression in gastric cancer. Hepatogastroenterology. 2001; 48: 1199-1201.
    30 Chen G, Tang N, Wang C, Xiao L, Yu M, Zhao L, et al. TNF-alpha-inducing protein of Helicobacter pylori induces epithelial-mesenchymal transition (EMT) in gastric cancer cells through activation of IL-6/STAT3 signaling pathway. Biochem Biophys Res Commun. 2017; 484: 311-317. http://doi.org/10.1016/j.bbrc.2017.01.110.
    31 Suganuma M, Watanabe T, Sueoka E, Lim IK, Fujiki H. Role of TNF-alpha-Inducing Protein Secreted by Helicobacter pylori as a Tumor Promoter in Gastric Cancer and Emerging Preventive Strategies. Toxins (Basel). 2021; 13. http://doi.org/10.3390/toxins13030181.
    32 Guo K, Duan J, Lu J, Xiao L, Han L, Zeng S, et al. Tumor necrosis factor-α-inducing protein of Helicobacter pylori promotes epithelial-mesenchymal transition and cancer stem-like cells properties via activation of Wnt/β-catenin signaling pathway in gastric cancer cells. 2022; 80. http://doi.org/10.1093/femspd/ftac025.
    33 Hwang MA, Won M, Im JY. TNF-α Secreted from Macrophages Increases the Expression of Prometastatic Integrin αV in Gastric Cancer. 2022; 24. http://doi.org/10.3390/ijms24010376.
    34 Gholamalizadeh M, Mirzaei Dahka S, Sedigh Ebrahim-Saraie H, Akbari ME, Pourtaheri A, Rastgoo S, et al. The Role of Tumor Necrosis Factor-α (TNF-α) Polymorphisms in Gastric Cancer: a Meta-Analysis. J Gastrointest Cancer. 2022; 53: 756-769. http://doi.org/10.1007/s12029-021-00688-w.
    35 Nakamura Y, Kinoshita J. Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of M2 macrophages and mast cells by Tranilast. 2022; 25: 515-526. http://doi.org/10.1007/s10120-021-01275-5.
    36 Tang Z, Gu Y, Shi Z, Min L, Zhang Z, Zhou P, et al. Multiplex immune profiling reveals the role of serum immune proteomics in predicting response to preoperative chemotherapy of gastric cancer. Cell Rep Med. 2023: 100931. http://doi.org/10.1016/j.xcrm.2023.100931.
    37 Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol. 2023; 14: 1255727. http://doi.org/10.3389/fphar.2023.1255727.
    38 Alikhani M, Esmaeili M, Tashakoripour M, Mohagheghi MA, Eshagh Hosseini M, Touati E, et al. Alteration in Serum Levels of Tumor Necrosis Factor Alpha is associated with Histopathologic Progression of Gastric Cancer. Iran Biomed J. 2023; 27: 72-78. http://doi.org/10.52547/ibj.3847.
    39 Matsumoto T, Ohki S, Kaneta A, Matsuishi A, Maruyama Y, Yamada L, et al. Systemic inflammation score as a preoperative prognostic factor for patients with pT2-T4 resectable gastric cancer: a retrospective study. BMC Surg. 2023; 23: 8. http://doi.org/10.1186/s12893-023-01904-z.
    40 Lin CN, Wang CJ, Chao YJ, Lai MD, Shan YS. The significance of the co-existence of osteopontin and tumor-associated macrophages in gastric cancer progression. BMC Cancer. 2015; 15: 128. http://doi.org/10.1186/s12885-015-1114-3.
    41 Wang HC, Chen CW, Yang CL, Tsai IM, Hou YC, Chen CJ, et al. Tumor-Associated Macrophages Promote Epigenetic Silencing of Gelsolin through DNA Methyltransferase 1 in Gastric Cancer Cells. Cancer Immunol Res. 2017; 5: 885-897. http://doi.org/10.1158/2326-6066.CIR-16-0295.
    42 Cai H, Chen Y, Chen X, Sun W, Li Y. Tumor-associated macrophages mediate gastrointestinal stromal tumor cell metastasis through CXCL2/CXCR2. Cell Immunol. 2023; 384: 104642. http://doi.org/10.1016/j.cellimm.2022.104642.
    43 Gutiérrez-Seijo A, García-Martínez E. CCL20/TNF/VEGFA Cytokine Secretory Phenotype of Tumor-Associated Macrophages Is a Negative Prognostic Factor in Cutaneous Melanoma. 2021; 13. http://doi.org/10.3390/cancers13163943.
    44 Hwang MA, Won M, Im JY, Kang MJ, Kweon DH, Kim BK. TNF-alpha Secreted from Macrophages Increases the Expression of Prometastatic Integrin alphaV in Gastric Cancer. Int J Mol Sci. 2022; 24. http://doi.org/10.3390/ijms24010376.
    45 Chen CW, Wang HC, Tsai IM, Chen IS, Chen CJ, Hou YC, et al. CD204-positive M2-like tumor-associated macrophages increase migration of gastric cancer cells by upregulating miR-210 to reduce NTN4 expression. Cancer Immunol Immunother. 2024; 73: 1. http://doi.org/10.1007/s00262-023-03601-5.
    46 Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, et al. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol. 2024; 8: 31. http://doi.org/10.1038/s41698-024-00522-z.
    47 Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci. 2017; 18. http://doi.org/10.3390/ijms18112362.
    48 Wang X, Lee J, Xie C. Autophagy Regulation on Cancer Stem Cell Maintenance, Metastasis, and Therapy Resistance. Cancers (Basel). 2022; 14. http://doi.org/10.3390/cancers14020381.
    49 Iborra FJ, Marti C, Calabuig-Navarro V, Papadopoulos P, Meseguer S, Iborra PM, et al. Chemotherapy induces cell plasticity; controlling plasticity increases therapeutic response. Signal Transduct Target Ther. 2023; 8: 256. http://doi.org/10.1038/s41392-023-01500-w.
    50 Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, et al. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther. 2023; 8: 113. http://doi.org/10.1038/s41392-023-01383-x.
    51 Jogo T, Oki E, Nakanishi R, Ando K, Nakashima Y, Kimura Y, et al. Expression of CD44 variant 9 induces chemoresistance of gastric cancer by controlling intracellular reactive oxygen spices accumulation. Gastric Cancer. 2021; 24: 1089-1099. http://doi.org/10.1007/s10120-021-01194-5.
    52 Nallasamy P, Nimmakayala RK, Parte S, Are AC, Batra SK, Ponnusamy MP. Tumor microenvironment enriches the stemness features: the architectural event of therapy resistance and metastasis. Mol Cancer. 2022; 21: 225. http://doi.org/10.1186/s12943-022-01682-x.
    53 Vyas D, Laput G, Vyas AK. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. Onco Targets Ther. 2014; 7: 1015-1023. http://doi.org/10.2147/OTT.S60114.
    54 Francescangeli F, De Angelis ML, Rossi R, Cuccu A, Giuliani A, De Maria R, et al. Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution. Cancer Metastasis Rev. 2023; 42: 197-215. http://doi.org/10.1007/s10555-023-10092-4.
    55 de Castro LR, de Oliveira LD, Milan TM, Eskenazi APE, Bighetti-Trevisan RL, de Almeida OGG, et al. Up-regulation of TNF-alpha/NFkB/SIRT1 axis drives aggressiveness and cancer stem cells accumulation in chemoresistant oral squamous cell carcinoma. J Cell Physiol. 2024; 239: e31164. http://doi.org/10.1002/jcp.31164.
    56 Verstrepen L, Verhelst K, van Loo G, Carpentier I, Ley SC, Beyaert R. Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochem Pharmacol. 2010; 80: 2009-2020. http://doi.org/10.1016/j.bcp.2010.06.044.
    57 Zilberman-Rudenko J, Shawver LM, Wessel AW, Luo Y, Pelletier M, Tsai WL, et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-kappaB activation and autoinflammatory disease. Proc Natl Acad Sci U S A. 2016; 113: 1612-1617. http://doi.org/10.1073/pnas.1518163113.
    58 Peng ZM, Zhang YY, Wei D, Zhang XJ, Liu B, Peng J, et al. MALT1 promotes necroptosis in stroke rat brain via targeting the A20/RIPK3 pathway. Arch Biochem Biophys. 2023; 735: 109502. http://doi.org/10.1016/j.abb.2023.109502.
    59 Iorga A, Donovan K, Shojaie L, Johnson H, Kwok J, Suda J, et al. Interaction of RIPK1 and A20 modulates MAPK signaling in murine acetaminophen toxicity. J Biol Chem. 2021; 296: 100300. http://doi.org/10.1016/j.jbc.2021.100300.
    60 Song Z, Wei W. Essential role of the linear ubiquitin chain assembly complex and TAK1 kinase in A20 mutant Hodgkin lymphoma. 2020; 117: 28980-28991. http://doi.org/10.1073/pnas.2014470117.
    61 Priem D, Devos M, Druwe S, Martens A, Slowicka K, Ting AT, et al. A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis. 2019; 10: 692. http://doi.org/10.1038/s41419-019-1937-y.
    62 Hjelmeland AB, Wu Q, Wickman S, Eyler C, Heddleston J, Shi Q, et al. Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol. 2010; 8: e1000319. http://doi.org/10.1371/journal.pbio.1000319.
    63 Vendrell JA, Ghayad S, Ben-Larbi S, Dumontet C, Mechti N, Cohen PA. A20/TNFAIP3, a new estrogen-regulated gene that confers tamoxifen resistance in breast cancer cells. Oncogene. 2007; 26: 4656-4667. http://doi.org/10.1038/sj.onc.1210269.
    64 Jia Q, Sun H, Xiao F, Sai Y, Li Q, Zhang X, et al. miR-17-92 promotes leukemogenesis in chronic myeloid leukemia via targeting A20 and activation of NF-kappaB signaling. Biochem Biophys Res Commun. 2017; 487: 868-874. http://doi.org/10.1016/j.bbrc.2017.04.144.
    65 Shi Y, Wang X, Wang J, Wang X, Zhou H, Zhang L. The dual roles of A20 in cancer. Cancer Lett. 2021; 511: 26-35. http://doi.org/10.1016/j.canlet.2021.04.017.
    66 Bellail AC, Olson JJ, Yang X, Chen ZJ, Hao C. A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma. Cell Death Dis. 2012; 2: 140-155. http://doi.org/10.1038/s41419-022-05535-9
    10.1158/2159-8290.cd-11-0172.
    67 Geismann C, Hauser C, Grohmann F, Schneeweis C, Bölter N, Gundlach JP, et al. NF-κB/RelA controlled A20 limits TRAIL-induced apoptosis in pancreatic cancer. 2023; 14: 3. http://doi.org/10.1038/s41419-022-05535-9.
    68 Hadisaputri YE, Miyazaki T, Yokobori T, Sohda M, Sakai M, Ozawa D, et al. TNFAIP3 overexpression is an independent factor for poor survival in esophageal squamous cell carcinoma. Int J Oncol. 2017; 50: 1002-1010. http://doi.org/10.3892/ijo.2017.3869.
    69 Wang Y, Wan M, Zhou Q, Wang H, Wang Z, Zhong X, et al. The Prognostic Role of SOCS3 and A20 in Human Cholangiocarcinoma. PLoS One. 2015; 10: e0141165. http://doi.org/10.1371/journal.pone.0141165.
    70 Lee JH, Jung SM, Yang KM, Bae E, Ahn SG, Park JS, et al. A20 promotes metastasis of aggressive basal-like breast cancers through multi-monoubiquitylation of Snail1. Nat Cell Biol. 2017; 19: 1260-1273. http://doi.org/10.1038/ncb3609.
    71 Sohn KC, Li ZJ, Choi DK, Zhang T, Lim JW, Chang IK, et al. Imiquimod induces apoptosis of squamous cell carcinoma (SCC) cells via regulation of A20. PLoS One. 2014; 9: e95337. http://doi.org/10.1371/journal.pone.0095337.
    72 Shao B, Wei X, Luo M, Yu J, Tong A, Ma X, et al. Inhibition of A20 expression in tumor microenvironment exerts anti-tumor effect through inducing myeloid-derived suppressor cells apoptosis. Sci Rep. 2015; 5: 16437. http://doi.org/10.1038/srep16437.
    73 Wisnieski F, Santos LC, Calcagno DQ, Geraldis JC, Gigek CO, Anauate AC, et al. The impact of DNA demethylation on the upregulation of the NRN1 and TNFAIP3 genes associated with advanced gastric cancer. J Mol Med (Berl). 2020; 98: 707-717. http://doi.org/10.1007/s00109-020-01902-1.
    74 Du B, Liu M, Li C, Geng X, Zhang X, Ning D, et al. The potential role of TNFAIP3 in malignant transformation of gastric carcinoma. Pathol Res Pract. 2019; 215: 152471. http://doi.org/10.1016/j.prp.2019.152471.
    75 Lim MCC, Maubach G, Birkl-Toeglhofer AM, Haybaeck J, Vieth M, Naumann M. A20 undermines alternative NF-κB activity and expression of anti-apoptotic genes in Helicobacter pylori infection. 2022; 79: 102. http://doi.org/10.1007/s00018-022-04139-y.
    76 Jantaree P, Chaithongyot S, Sokolova O, Naumann M. USP48 and A20 synergistically promote cell survival in Helicobacter pylori infection. 2022; 79: 461. http://doi.org/10.1007/s00018-022-04489-7.
    77 Jantaree P, Yu Y, Chaithongyot S, Täger C, Sarabi MA, Meyer TF, et al. Human gastric fibroblasts ameliorate A20-dependent cell survival in co-cultured gastric epithelial cells infected by Helicobacter pylori. Biochim Biophys Acta Mol Cell Res. 2022; 1869: 119364. http://doi.org/10.1016/j.bbamcr.2022.119364.
    78 Bellail AC, Olson JJ, Yang X, Chen ZJ, Hao C. A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma. Cancer Discov. 2012; 2: 140-155. http://doi.org/10.1158/2159-8290.CD-11-0172.
    79 Chen Y, Yin J, Zhao L, Zhou G, Dong S, Zhang Y, et al. Reconstruction of the gastric cancer microenvironment after neoadjuvant chemotherapy by longitudinal single-cell sequencing. J Transl Med. 2022; 20: 563. http://doi.org/10.1186/s12967-022-03792-y.
    80 Cao L, Zhu S, Lu H, Soutto M, Bhat N, Chen Z, et al. Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-kappaB Promotes Gastric Tumorigenesis via beta-catenin Signaling Axis. Gastroenterology. 2022; 162: 1716-1731 e1717. http://doi.org/10.1053/j.gastro.2022.01.046.
    81 Zhao L, Liu Y, Zhang S, Wei L, Cheng H, Wang J, et al. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis. 2022; 13: 378. http://doi.org/10.1038/s41419-022-04821-w.
    82 Gao Q, Huang C, Liu T, Yang F, Chen Z, Sun L, et al. Gastric cancer mesenchymal stem cells promote tumor glycolysis and chemoresistance by regulating B7H3 in gastric cancer cells. J Cell Biochem. 2024; 125: e30521. http://doi.org/10.1002/jcb.30521.
    83 Hwang MA, Won M, Im JY, Kang MJ, Kweon DH, Kim BK. TNF-alpha Secreted from Macrophages Increases the Expression of Prometastatic Integrin alphaV in Gastric Cancer. Int J Mol Sci. 2022; 24: 376. http://doi.org/10.3390/ijms24010376.
    84 Dagar G, Kumar R, Yadav KK, Singh M, Pandita TK. Ubiquitination and deubiquitination: Implications on cancer therapy. Biochim Biophys Acta Gene Regul Mech. 2023; 1866: 194979. http://doi.org/10.1016/j.bbagrm.2023.194979.
    85 Peng X, Zhang C, Gao JW, Wang F, Bao JP, Zhou ZM, et al. A20 ameliorates disc degeneration by suppressing mTOR/BNIP3 axis-mediated mitophagy. Genes Genomics. 2023; 45: 657-671. http://doi.org/10.1007/s13258-022-01343-9.
    86 Peng X, Zhang C, Zhou ZM, Wang K, Gao JW, Qian ZY, et al. A20 attenuates pyroptosis and apoptosis in nucleus pulposus cells via promoting mitophagy and stabilizing mitochondrial dynamics. Inflamm Res. 2022; 71: 695-710. http://doi.org/10.1007/s00011-022-01570-6.
    87 Yang C, Zang W, Tang Z, Ji Y, Xu R, Yang Y, et al. A20/TNFAIP3 Regulates the DNA Damage Response and Mediates Tumor Cell Resistance to DNA-Damaging Therapy. Cancer Res. 2018; 78: 1069-1082. http://doi.org/10.1158/0008-5472.CAN-17-2143.
    88 Ma J, Wang H, Guo S, Yi X, Zhao T, Liu Y, et al. A20 promotes melanoma progression via the activation of Akt pathway. Cell Death Dis. 2020; 11: 794. http://doi.org/10.1038/s41419-020-03001-y.
    89 Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010; 22: 231-237. http://doi.org/10.1016/j.coi.2010.01.009.
    90 Priem D, van Loo G, Bertrand MJM. A20 and Cell Death-driven Inflammation. Trends Immunol. 2020; 41: 421-435. http://doi.org/10.1016/j.it.2020.03.001.
    91 Zhang S, Liu X, Abdulmomen Ali Mohammed S, Li H, Cai W, Guan W, et al. Adaptor SH3BGRL drives autophagy-mediated chemoresistance through promoting PIK3C3 translation and ATG12 stability in breast cancers. Autophagy. 2022; 18: 1822-1840. http://doi.org/10.1080/15548627.2021.2002108.
    92 Zhu W, Huang M, Thakur A, Yan Y, Wu X. FGF19 promotes cell autophagy and cisplatin chemoresistance by activating MAPK signaling in ovarian cancer. PeerJ. 2023; 11: e14827. http://doi.org/10.7717/peerj.14827.
    93 Yang MC, Wang HC, Hou YC, Tung HL, Chiu TJ, Shan YS. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer. 2015; 14: 179. http://doi.org/10.1186/s12943-015-0449-3.
    94 Slowicka K, Serramito-Gomez I, Boada-Romero E, Martens A, Sze M, Petta I, et al. Physical and functional interaction between A20 and ATG16L1-WD40 domain in the control of intestinal homeostasis. Nat Commun. 2019; 10: 1834. http://doi.org/10.1038/s41467-019-09667-z.
    95 Wang YT, Liu TY, Shen CH, Lin SY, Hung CC, Hsu LC, et al. K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates oxidative stress-induced autophagy. Cell Rep. 2022; 38: 110354. http://doi.org/10.1016/j.celrep.2022.110354.
    96 Martens A, van Loo G. A20 at the Crossroads of Cell Death, Inflammation, and Autoimmunity. Cold Spring Harb Perspect Biol. 2020; 12: a036418. http://doi.org/10.1101/cshperspect.a036418.
    97 Kanayama M, Inoue M, Danzaki K, Hammer G, He YW, Shinohara ML. Autophagy enhances NFkappaB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 2015; 6: 5779. http://doi.org/10.1038/ncomms6779.
    98 Metlagel Z, Otomo C, Ohashi K, Takaesu G, Otomo T. Structural insights into E2-E3 interaction for LC3 lipidation. Autophagy. 2014; 10: 522-523. http://doi.org/10.4161/auto.27594.
    99 Oral O, Oz-Arslan D, Itah Z, Naghavi A, Deveci R, Karacali S, et al. Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis. 2012; 17: 810-820. http://doi.org/10.1007/s10495-012-0735-0.
    100 Soni D, Wang DM, Regmi SC, Mittal M, Vogel SM, Schluter D, et al. Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury. Cell Death Discov. 2018; 4: 60. http://doi.org/10.1038/s41420-018-0056-3.
    101 Yin H, Karayel O, Chao YY, Seeholzer T, Hamp I, Plettenburg O, et al. A20 and ABIN-1 cooperate in balancing CBM complex-triggered NF-kappaB signaling in activated T cells. Cell Mol Life Sci. 2022; 79: 112. http://doi.org/10.1007/s00018-022-04154-z.
    102 Benchoua A, Couriaud C, Guegan C, Tartier L, Couvert P, Friocourt G, et al. Active caspase-8 translocates into the nucleus of apoptotic cells to inactivate poly(ADP-ribose) polymerase-2. J Biol Chem. 2002; 277: 34217-34222. http://doi.org/10.1074/jbc.M203941200.
    103 Mortell KH, Marmorstein AD, Cramer EB. Fetal bovine serum and other sera used in tissue culture increase epithelial permeability. In Vitro Cell Dev Biol. 1993; 29A: 235-238. http://doi.org/10.1007/BF02634190.
    104 Kim KA, Kim D, Kim JH, Shin YJ, Kim ES, Akram M, et al. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids Barriers CNS. 2020; 17: 21. http://doi.org/10.1186/s12987-020-00182-8.
    105 Utech M, Mennigen R, Bruewer M. Endocytosis and recycling of tight junction proteins in inflammation. J Biomed Biotechnol. 2010; 2010: 484987. http://doi.org/10.1155/2010/484987.
    106 Soni D, Wang DM, Regmi SC, Mittal M, Vogel SM, Schluter D, et al. Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury. Cell Death Discov. 2018; 4: 60. http://doi.org/10.1038/s41420-018-0056-3.
    107 Wang Y, Zhang J, Yi XJ, Yu FS. Activation of ERK1/2 MAP kinase pathway induces tight junction disruption in human corneal epithelial cells. Exp Eye Res. 2004; 78: 125-136. http://doi.org/10.1016/j.exer.2003.09.002.
    108 Feng S, Zou L, Wang H, He R, Liu K, Zhu H. RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability. Molecules. 2018; 23. http://doi.org/10.3390/molecules23092371.
    109 Jan N, Sofi S, Qayoom H, Shabir A, Haq BU, Macha MA, et al. Metronomic chemotherapy and drug repurposing: A paradigm shift in oncology. Heliyon. 2024; 10: e24670. http://doi.org/10.1016/j.heliyon.2024.e24670.
    110 Luo M, Wang X, Wu S, Yang C, Su Q, Huang L, et al. A20 promotes colorectal cancer immune evasion by upregulating STC1 expression to block "eat-me" signal. Signal Transduct Target Ther. 2023; 8: 312. http://doi.org/10.1038/s41392-023-01545-x.
    111 Zheng Y, Wang S, Zhong Y, Huang C, Wu X. A20 affects macrophage polarization through the NLRP3 inflammasome signaling pathway and promotes breast cancer progression. Exp Ther Med. 2023; 25: 147. http://doi.org/10.3892/etm.2023.11846.
    112 You JH, Lee J, Roh JL. PGRMC1-dependent lipophagy promotes ferroptosis in paclitaxel-tolerant persister cancer cells. J Exp Clin Cancer Res. 2021; 40: 350. http://doi.org/10.1186/s13046-021-02168-2.
    113 Liu X, Jin X, Wang X, Yan X, Wang C, Wang K, et al. Knockdown of A20 attenuates microglial susceptibility to OGD/R-induced ferroptosis and upregulates inflammatory responses. Immunopharmacol Immunotoxicol. 2023; 45: 539-548. http://doi.org/10.1080/08923973.2023.2189061.
    114 Matsuzawa Y, Oshima S, Takahara M, Maeyashiki C, Nemoto Y, Kobayashi M, et al. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy. 2015; 11: 1052-1062. http://doi.org/10.1080/15548627.2015.1055439.
    115 Li X, Zhou Y, Yang L, Ma Y, Peng X, Yang S, et al. LncRNA NEAT1 promotes autophagy via regulating miR-204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. J Cell Physiol. 2020; 235: 3402-3413. http://doi.org/10.1002/jcp.29230.
    116 Zou L, Sun P, Zhang L. miR-651-3p Enhances the Sensitivity of Hepatocellular Carcinoma to Cisplatin via Targeting ATG3-Mediated Cell Autophagy. J Oncol. 2021; 2021: 5391977. http://doi.org/10.1155/2021/5391977.
    117 Lim MCC, Maubach G, Sokolova O, Feige MH, Diezko R, Buchbinder J, et al. Pathogen-induced ubiquitin-editing enzyme A20 bifunctionally shuts off NF-kappaB and caspase-8-dependent apoptotic cell death. Cell Death Differ. 2017; 24: 1621-1631. http://doi.org/10.1038/cdd.2017.89.
    118 Qin C, Wang Y, Zhao B, Li Z, Li T, Yang X, et al. STOML2 restricts mitophagy and increases chemosensitivity in pancreatic cancer through stabilizing PARL-induced PINK1 degradation. Cell Death Dis. 2023; 14: 191. http://doi.org/10.1038/s41419-023-05711-5.
    119 Tonkin-Reeves A, Giuliani CM, Price JT. Inhibition of autophagy; an opportunity for the treatment of cancer resistance. Front Cell Dev Biol. 2023; 11: 1177440. http://doi.org/10.3389/fcell.2023.1177440.
    120 Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 2000; 11: 4131-4142. http://doi.org/10.1091/mbc.11.12.4131.
    121 Huang S, Zhang J, Li Y, Xu Y, Jia H, An L, et al. Downregulation of Claudin5 promotes malignant progression and radioresistance through Beclin1-mediated autophagy in esophageal squamous cell carcinoma. J Transl Med. 2023; 21: 379. http://doi.org/10.1186/s12967-023-04248-7.
    122 Kolodziej LE, Lodolce JP, Chang JE, Schneider JR, Grimm WA, Bartulis SJ, et al. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions. PLoS One. 2011; 6: e26352. http://doi.org/10.1371/journal.pone.0026352.
    123 Yokoyama Y, Tamachi T, Iwata A, Maezawa Y, Meguro K, Yokota M, et al. A20 (Tnfaip3) expressed in CD4(+) T cells suppresses Th2 cell-mediated allergic airway inflammation in mice. Biochem Biophys Res Commun. 2022; 629: 47-53. http://doi.org/10.1016/j.bbrc.2022.08.097.
    124 Paul S, Bhardwaj M, Kang SC. GSTO1 confers drug resistance in HCT‑116 colon cancer cells through an interaction with TNFalphaIP3/A20. Int J Oncol. 2022; 61. http://doi.org/10.3892/ijo.2022.5426.
    125 Li L, Hailey DW, Soetandyo N, Li W, Lippincott-Schwartz J, Shu HB, et al. Localization of A20 to a lysosome-associated compartment and its role in NFkappaB signaling. Biochim Biophys Acta. 2008; 1783: 1140-1149. http://doi.org/10.1016/j.bbamcr.2008.01.029.
    126 Glowacka WK, Alberts P, Ouchida R, Wang JY, Rotin D. LAPTM5 protein is a positive regulator of proinflammatory signaling pathways in macrophages. J Biol Chem. 2012; 287: 27691-27702. http://doi.org/10.1074/jbc.M112.355917.
    127 Sharif M, Baek YB, Naveed A, Stalin N, Kang MI, Park SI, et al. Porcine Sapovirus-Induced Tight Junction Dissociation via Activation of RhoA/ROCK/MLC Signaling Pathway. J Virol. 2021; 95. http://doi.org/10.1128/JVI.00051-21.
    128 Hasan MK, Widhopf GF, 2nd, Zhang S, Lam SM, Shen Z, Briggs SP, et al. Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis. NPJ Breast Cancer. 2019; 5: 35. http://doi.org/10.1038/s41523-019-0131-9.
    129 Xu Z, Gu C, Yao X, Guo W, Wang H, Lin T, et al. CD73 promotes tumor metastasis by modulating RICS/RhoA signaling and EMT in gastric cancer. Cell Death Dis. 2020; 11: 202. http://doi.org/10.1038/s41419-020-2403-6.
    130 Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda). 2010; 25: 16-26. http://doi.org/10.1152/physiol.00034.2009.
    131 Kim JH, Park S, Lim SM, Eom HJ, Balch C, Lee J, et al. Rational design of small molecule RHOA inhibitors for gastric cancer. Pharmacogenomics J. 2020; 20: 601-612. http://doi.org/10.1038/s41397-020-0153-6.
    132 Nam S, Lee Y, Kim JH. RHOA protein expression correlates with clinical features in gastric cancer: a systematic review and meta-analysis. BMC Cancer. 2022; 22: 798. http://doi.org/10.1186/s12885-022-09904-7.
    133 Fan J, Li TJ, Zhao XH. Barrier-promoting efficiency of two bioactive flavonols quercetin and myricetin on rat intestinal epithelial (IEC-6) cells via suppressing Rho activation. RSC Adv. 2020; 10: 27249-27258. http://doi.org/10.1039/d0ra04162a.
    134 Hirase T, Kawashima S, Wong EY, Ueyama T, Rikitake Y, Tsukita S, et al. Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J Biol Chem. 2001; 276: 10423-10431. http://doi.org/10.1074/jbc.M007136200.
    135 Geismann C, Hauser C, Grohmann F, Schneeweis C, Bolter N, Gundlach JP, et al. NF-kappaB/RelA controlled A20 limits TRAIL-induced apoptosis in pancreatic cancer. Cell Death Dis. 2023; 14: 3. http://doi.org/10.1038/s41419-022-05535-9.
    136 Chen Z, Liu S, Xia Y, Wu K. MiR-31 Regulates Rho-Associated Kinase-Myosin Light Chain (ROCK-MLC) Pathway and Inhibits Gastric Cancer Invasion: Roles of RhoA. Med Sci Monit. 2016; 22: 4679-4691. http://doi.org/10.12659/msm.898399.
    137 Oh M, Batty S, Banerjee N, Kim TH. High extracellular glucose promotes cell motility by modulating cell deformability and contractility via the cAMP-RhoA-ROCK axis in human breast cancer cells. Mol Biol Cell. 2023; 34: ar79. http://doi.org/10.1091/mbc.E22-12-0560.
    138 Xie L, Huang H, Zheng Z, Yang Q, Wang S, Chen Y, et al. MYO1B enhances colorectal cancer metastasis by promoting the F-actin rearrangement and focal adhesion assembly via RhoA/ROCK/FAK signaling. Ann Transl Med. 2021; 9: 1543. http://doi.org/10.21037/atm-21-4702.
    139 Kim JG, Mahmud S, Min JK, Lee YB, Kim H, Kang DC, et al. RhoA GTPase phosphorylated at tyrosine 42 by src kinase binds to beta-catenin and contributes transcriptional regulation of vimentin upon Wnt3A. Redox Biol. 2021; 40: 101842. http://doi.org/10.1016/j.redox.2020.101842.
    140 Ozturk E, Despot-Slade E, Pichler M, Zenobi-Wong M. RhoA activation and nuclearization marks loss of chondrocyte phenotype in crosstalk with Wnt pathway. Exp Cell Res. 2017; 360: 113-124. http://doi.org/10.1016/j.yexcr.2017.08.033.

    無法下載圖示 校內:2029-08-20公開
    校外:2029-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE