簡易檢索 / 詳目顯示

研究生: 林玟均
Lin, Wen-Chun
論文名稱: 高速公路燃油消耗、碳排與平均速度估算及門架區間為基礎之波動分析-以台灣國道一號高速公路為例
Highway Fuel Consumption, Carbon Emission and Vehicle Speed Estimation with Gantry Section Based and Fluctuation Analysis of Taiwan Highway No. 1
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 電子化收費燃油消耗量碳排放量巨量資料
外文關鍵詞: Electronic Toll Collection, Fuel Consumption, Carbon Emission, Big Data
相關次數: 點閱:88下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以2014年遠通電收電子收費系統之巨量資料庫,取其中國道一號高速公路資料,並經過過濾與採礦,目的在於得到以下幾項數據值,包括(1)估算平均速度、燃油消耗量以及二氧化排放量,計算產出值將包含北上南下方向、五種車輛種類、旅次記錄特性之分類,並加入總量和每延人公里或延噸公里不同單位的估算。且為了解高速公路上高低碳排路段分布,因此(2)根據各門架區間碳排量與平均碳排量進行高低值波動分析;同時,本論文欲探討高速公路上高低車速路段分布,因此(3)將各門架區間平均車速與速限區間進行波動分析;期望能全面了解不同衡量基準以及計算依據之產出值,並同時比對相同門架位址對應的碳排與速度狀況。

    研究結果(1)顯示,以車種來說,小客車在國道一號上車輛數(64.275%)最多,是最大宗油耗和碳排車種,且具有最高平均速度值;聯結車之車輛數的佔比為7.29%,是第二大油耗和碳排車種,平均速度值最低。雖然聯結車延噸公里油耗與碳排量低,但總量來看呈現高碳排高油耗狀況,因此建議依照貨物之運輸距離和目的地型態發展更適合的複合運輸。若貨物目的地分散,且運輸距離為短程,則建議以聯結車行駛於高速公路的方式取代小貨車或是大貨車運送;若貨物目的地集中且運輸距離多為長程,則建議以排碳量較少之短程海運或鐵公路運輸取代。研究結果(2)和(3)顯示,北部地區碳排量比南部地區高,車速相對也較低,因此建議在常態擁擠路段如基隆、內湖、五股等地區,在早上7:00~9:00以及傍晚17:00~18:00間政府應擬定方案,達到順暢車流並減排之功效。

    The paper uses the big database from Far Eastern Electronic Toll Collection Company (FETC) in 2014 and organizes the data of Taiwan National Highway No. 1. through filtering and mining. The aims are (1) to calculate the average speed, fuel consumption and carbon emission. The outcome will consider two directions(north and south), 5 types of vehicles, and the category of journey characteristics. The paper also takes the calculation of total amount and per passenger kilometers or per tons kilometers into consideration. In order to know about the distribution of the sections , which have different carbon emission ,(2) it conducts fluctuation analysis according to carbon emission of each gantry section and the average carbon emission. Meanwhile, (3)to figure out the section distribution of different speeds, it also analyzes the fluctuation condition of the average speed in each gantry section and in speed limit section. The purpose is to fully realize the outcome based on different evaluation and calculation. At the same time, hope to compare carbon emission and speed at the same gantry.

    The results show (1) that the amount of passenger vehicles(64.275%) accounts for the largest ratio of amount and also contributes to the largest fuel consumption, carbon emission and the highest speed average. As for artic heavy duty truck(AHTC), although the ratio of amount only accounts for 7.29%, the fuel consumption and carbon emission are the second largest. However, the average speed is quite low. Despite the fact that per ton kilometer fuel consumption and carbon emission of AHTC are both the lowest, the fuel consumption and carbon emission are the second largest in total while AHTC shows low efficiency of business.As a result, choosing a proper transportation should depend on the transport distance and destination. If the destination disperses within short distance, it would be better to use AHTC on the high way instead of small or large trucks. On the contrary, if the destination centralizes within long distance, short sea shipping and railroad are suggested. The research result (2) and (3) show that though the carbon emission in northern area is higher than that in southern area, the speed islow in northern area. There are recurrent congestion occurred in Keelung and Wugu. Therefore, it will be helpful to reduce the crowded car flow and carbon emission if the government increases toll fee from 7:00am to 9:00am and from 17:00pm to 18:00pm.

    目錄 目錄XIII 圖目錄XVII 表目錄XX 第一章 緒論1 1.1 研究背景1 1.2 研究動機6 1.3 研究目的6 1.4 研究架構9 1.5 研究範圍與限制10 第二章 文獻回顧12 2.1 高速公路特性探討與資料分析方法12 2.2 能源消耗與二氧化碳排模型與估算14 第三章 研究方法16 3.1 估算平均行駛速度研究方法17 3.2估算燃油消耗量研究方法19 3.3 估算二氧化碳排放量研究方法21 3.4 各門架區間二氧化碳排放量與均值波動分析研究方法22 3.5 各門架區間平均速度與速限波動分析研究方法23 3.6 小結24 第四章 實證分析25 4.1 ETC資料結構與初步分析說明25 4.2 平均速度27 4.2.1 全條高速公路之各車種平均速度27 4.2.2 全條高速公路之各車種24小時平均速度30 4.3 估算燃油消耗量34 4.3.1 僅通過單一門架之油耗量35 4.3.2 僅通過單一門架之每延人或延噸公里油耗量38 4.3.3 通過兩個門架以上之油耗量42 4.3.4 通過兩個門架以上之每延人或延噸公里油耗量45 4.3.5 全條高速公路之油耗量48 4.3.6 全條高速公路之每延人或延噸公里油耗量52 4.4 二氧化碳排放量56 4.4.1 僅通過單一門架之碳排量56 4.4.2 僅通過單一門架之每延人或延噸公里碳排量59 4.4.3 通過兩個門架以上之碳排量63 4.4.4 通過兩個門架以上之每延人或延噸公里碳排量66 4.4.5 全條高速公路之碳排量70 4.4.6 全條高速公路之每延人或延噸公里碳排量73 4.5 各門架區間各車種之碳排量與均值波動分析77 4.5.1 全條高速公路各車種各門架區間之碳排量78 4.5.2 各門架碳排放量與平均值波動分析80 4.6 各門架區間各車種之平均速度與速限波動分析82 4.6.1 全條高速公路各車種各門架區間之平均速度82 4.6.2 各門架平均速度與速限區間波動分析84 4.7 小結87 第五章 結論與建議89 5.1 結論與建議89 5.2 未來研究方向與討論92 參考文獻93

    中文文獻
    朱志杰(2013)。使用車輛偵測器和自動車輛辨識之資料預測高速公路旅行時間。國立交通大學,運輸科技與管理學系,碩士論文。2014年3月 16日,取自: http://www.iot.gov.tw/ct.asp?xItem=684442&ctNode=1054&mp=1。

    卓楷霖(2012)。構建高速公路出口匝道車流回堵對主線車流影響模式。國立交通大學,運輸科技與管理學系,碩士論文。2014年,4月21日,取自: http://www.iot.gov.tw/ct.asp?xItem=670920&ctNode=1054&mp=1。

    臺灣公路容量手冊(2011)。交通部運輸研究所。2014年4月15日,取自:http://thcs.iot.gov.tw:8080/THCS/download/THCS_handbook.pdf。

    我國燃料燃燒之二氧化碳排放統計與分析(2013年7月),台灣經濟部能源局。2014年5月2日,取自: http://web3.moeaboe.gov.tw/ECW/populace/co ntent/SubMenu.aspx?menu_id=114。

    遠通電收,2014年5月29日,取自: http://www.fetc.net.tw/。

    運輸部門能源消耗與溫室氣體減量評估模型建立(2013)。交通部運輸研究所。2014年5月30日,取自: http://www.iot.gov.tw/ct.asp?xItem=679676&ctNode= 1448&mp=1。

    中華民國交通部公路總局,公路分類。2014年6月2日,取自: http://www.thb.gov.tw/TM/Webpage.aspx?entry=118。

    林榮洲(2012)。小客車執行節能駕駛之耗能減量效益分析。逢甲大學,運輸科技與管理學系碩士在職專班,碩士論文。2014年6月5日,取自: http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22100FCU05423015%22.&searchmode=basic。

    高速公路年報(2006~2013),中華民國交通部台灣區國道高速公路局。2014年6月10日,取自: http://www.freeway.gov.tw/mp/MPPeriodical.aspx?id =20& RID=31。

    溫室氣體排放係數管理表6.0.1版。行政院環境保護署,國家溫室氣體登錄平台。2014年9月20日,取自: http://ghgregistry.epa.gov.tw/Tool /tools.aspx。

    英文文獻
    Barth, M., & Boriboonsomsin, K. (2009). Energy and emissions impacts of a freeway-based dynamic eco-driving system, Transportation Research Part D, 14, 400-410.Retrieved Mar.26, 2014, from http://www.sciencedirect.co m/science/article/pii/S1877042813022507.

    Boriboonsomsin, K., & Barth, M. (2009). Impacts of Road Grade on Fuel Consumption and Carbon Dioxide Emissions Evidenced by Use of Advanced Navigation Systems, Transportation Research Record, 2139, 21-30. Retrieved Aug.30, 2014, from http://trb.metapress.com/content/g77x60gv21123376/.

    eCoMove Final brochure, 2013. Retrieved Apr.12, 2014, from http://www.eco move-project.eu/publications/brochures/.

    IEA(2014), CO2 Emissions from Fuel Combustion Highlights. Retrieved Jun.20, 2014, from http://www.iea.org/publications/freepublications/publication/CO2E missionsFromFuelCombustionHighlights2013.pdf.
    IEA(2014), Key World Energy Statistics. Retrieved May.19, 2014, from http:// www.iea.org/publications/freepublications/publication/KeyWorld2013_FINAL_WEB.pdf.

    IPCC(2006), Guidelines for National Greenhouse Gas Inventories. Retrieved May.1, 2014, from http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

    IPCC(2007), Climate Change 2007: Mitigation of Climate Change. Retrieved May.28, 2014, from http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4_wg 3_full_report.pdf.
    Komada, K., Masukura, S., & Nagatani, T.(2009). Traffic flow on a toll highway with electronic and traditional tollgates, Physica A, 388, 4979-4990. Retrieved Jun.3, 2014, from http://www.sciencedirect.com/science/article/pii/S03784371 09006670.

    Perez-Martinez, P. J., & Miranda, R. M.(2014). Energy consumption and intensity of toll highway transport in Spain, Transportation Research Part D, 27, 1-5. Retrieved May.30, 2014, from http://www.sciencedirect.com/sc ience/articl e/pii/S 1361920913001430.

    Perez-Martinez, P. J., Ming, D., Dell’Asin, G., & Monzon, A.(2011). Evaluation of the influence of toll systems on energy consumption and CO2 emissions A case study of a Spanish highway, Journal of King Saud University Science, 23, 301-310. Retrieved Jun.1, 2014, from http://www.sciencedirect.com/science/ article/pii /S1018364710001618.

    Saboohi, Y., & Farzaneh, H.(2009). Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption, Applied Energy, 86, 1925-1932. Retrieved May.13, 2014, from http://www.sciencedirect.com/scien ce/artile/ pii/S0306261908003371.

    Seo, Y., & Kim, S. M.(2013). Estimation on greenhouse gas emissions from road traffic : A case study in Korea, Renewable and Sustainable Energy Reviews, 28, 777-787. Retrieved May.23, 2014, from http://www.sciencedirect.com/science/ article/pii/S136403211300556X.

    TAG Unit 3.5.6, Values of Time and Operating Costs, Department for Transport, UK, April 2009. Retrieved Jun.23, 2014, from file:///C:/Users/Lin/Downlo ads/E-3-8%20WebTAG%203.5.6%20-%20Value%20of%20Time%20and%20Vehicle%20Operating%20Costs%20(1).pdf.

    Weng, J., Liu, L., & Du, B. (2010). ETC Data Based Traffic Information Mining Techniques, Journal of Transportation Systems Engineering and Information Technology, 10(2), 57-63. Retrieved Apr.10, 2014, from http://www.sciencedir ect.com/science/article/pii/S1570667209600337.

    World Bank(2012), Turn Down the 4°C Heat : Why a 4°C Warmer World Must be Avoided. Retrieved Mar.25, 2014, from http://documents.worldbank.org/curaed /en/2012/11/17097815/turn-down-heat-4°c-warmer-world-must-avoided.

    World Bank, Data, Environment, CO2 emissions kt. Retrieved May.1, 2014, from http://wdi.worldbank.org/table/3.8#.

    無法下載圖示 校內:2020-02-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE