簡易檢索 / 詳目顯示

研究生: 許俊賢
Hsu, Jun-Hsien
論文名稱: 深層岩體熱力-水力-力學偶合行為之研究
A Study of Coupled Thermo-Hydro-Mechanical Behaviors in the Deep Rocks
指導教授: 陳昭旭
Chen, Chao-Shi
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 258
中文關鍵詞: TOUGH2核廢料熱力-水力-力學偶合(THM)FLAC3D
外文關鍵詞: thermo-hydro-mechanical(THM), FLAC3D, TOUGH2, nuclear waste
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核廢料為具有長半衰期之高放射性物質,對人類生活環境與生物圈具有威脅性,須以能確保長期隔絕之方式加以處理。經過世界各核能使用先進國家之研究顯示,較穩定且安全之處置法為深層地質處置(Deep Geological Disposal)。
    深層處置岩體受核廢料之高溫放熱作用後,其產生之熱效應將大幅影響深層岩體之各種力學性質與水文性質,本研究藉由FLAC3D 與TOUGH2 兩套數值分析程式,以探討核廢料處置後其周圍深層飽和岩體之熱力-水力-力學偶合(Coupled Thermo-Hydro-Mechanical)行為。分析結果顯示核廢料於處置5 年、10 年與50 年等階段之岩體溫度分佈情形、其岩體應力分佈、位移趨勢與飽和岩體之水流方向,與非熱力-水力-力學偶合之分析結果有明顯差異。
    本研究發現於溫度分佈中,經過偶合模擬之岩體溫度有向上並加速向外擴張之現象,其與岩體之熱能傳播為熱對流所主導有關,而未經偶合模擬之深層岩體為熱傳導形式所主導,其溫度呈現等量向外擴張之趨勢與經偶合分析之岩體不同。最大張應力之分布區域則多為結構體脆弱區,須予以補強以防岩體破壞。而飽和岩體中之水流體流向以熱源為中心呈上升趨勢,並有明顯之熱對流現象。

    From the studies of spent nuclear fuel disposal methods, they indicate that the deep geologic disposal is the most stable and safest agent to dispose the spent nuclear fuel. When the nuclear waste was placed in deep rocks, it will produce higher temperature and effect the properties of deep rocks. In this study, two computer codes of TOUGH2 and FLAC3D were used to link the thermomechanical and hydromechanical models for coupled analysis of thermo-hydro-mechanical(THM) behaviors in the saturated and porous deep rocks. The analysis was simulated a single storage hole and two-storage-hole with different distances, to observe the effect of the temperature spread, stress distribution, displacement and direction of fluid flow for 5, 10 and 50 years after deposition in saturated and porous rocks.
    The analysis indicates that major heat transfer in the porous deep rocks is heat convection and the result is different with that simulated by the
    uncoupled method. The highest temperature of nuclear waste simulated by the proposed coupled method arrives faster than that by the uncoupled analysis.
    The compressive, tensile and maximum principal stresses of rocks show that the top of storage holes and the walls of tunnels should be reinforced. Fluid flow has convected upward in porous rocks and has indirect related to fluid
    flow and the temperature spread.

    摘要........................................................................I 英文摘要................................................................... II 致謝........................................................................III 目錄........................................................................IV 表目錄......................................................................IX 圖目錄......................................................................X 符號定義....................................................................XIV 第一章 緒論.................................................................1 1.1 前言....................................................................1 1.2 研究目的................................................................4 1.3 研究內容................................................................4 第二章 前人研究.............................................................7 2.1 核廢料之處置概念........................................................7 2.1.1 核廢料處置方式........................................................8 2.2 核廢料深層處置之相關研究................................................12 2.3 岩體之基本性質..........................................................14 2.3.1 基本熱力學性質........................................................14 2.3.2 基本水力學性質........................................................21 2.4 受熱岩體之力學行為......................................................23 2.5 飽和岩層受熱後之水力學行為..............................................23 2.6 岩體之熱力-水力-力學(THM)行為...........................................24 2.7 小結....................................................................34 第三章 理論模式............................................................ 36 3.1 熱傳導理論..............................................................36 3.1.1 卡式直角座標系........................................................39 3.1.2 圓柱直角座標系........................................................39 3.1.3 球體座標系............................................................39 3.2 熱對流理論..............................................................40 3.3 水流體傳輸理論..........................................................43 3.4 有限差分法(FDM)之數值熱傳輸理論.........................................44 3.4.1 由微分方程式推導......................................................45 3.4.2 由能量平衡推導........................................................47 3.4.3 能量方程式微分推導....................................................48 3.5 FLAC3D 熱傳模式理論.....................................................51 3.5.1 基本定義..............................................................51 3.5.2 能量平衡方程式........................................................52 3.5.3 傳輸定律..............................................................54 3.5.4 初始條件與邊界........................................................54 3.5.5 力學偶合:熱應變......................................................55 3.6 TOUGH2 流體傳輸模式理論.................................................56 第四章 數值分析方法.........................................................61 4.1 FLAC3D 之概述...........................................................61 4.1.1 FLAC3D 之基本方程式...................................................61 4.1.2 FLAC3D 之運算程序.....................................................65 4.1.3 FLAC3D 熱傳模式特點...................................................66 4.1.4 FLAC3D 熱傳分析模式之數值方法.........................................67 4.1.5 FLAC3D 之基本分析架構.................................................79 4.1.6 FLAC3D 之實際分析步驟.................................................80 4.2 TOUGH2 之概述...........................................................83 4.2.1 TOUGH2 變數矩陣結構...................................................84 4.2.2 TOUGH2 熱流分析模式之數值方法.........................................88 4.2.3 TOUGH2 之基本分析架構.................................................91 4.3 熱力-水力(TH)與熱力-力學(TM)之數值分析模式偶合..........................91 4.3.1 TOUGH2 與FLAC3D 之偶合方法概述........................................92 4.3.2 TOUGH2 與FLAC3D 之偶合關係式..........................................95 第五章 核廢料處置坑之案例模擬與結果分析.....................................99 5.1 數值模擬之假設與材料參數設定............................................99 5.1.1 模擬模型之斷面與尺寸..................................................99 5.1.2 邊界設定..............................................................102 5.1.3 初始條件設定..........................................................110 5.2 模擬案例形式............................................................117 5.3 結果分析................................................................119 5.3.1 溫度分佈..............................................................119 5.3.2 應力分佈..............................................................129 5.3.3 位移趨勢..............................................................139 5.3.4 水流方向..............................................................144 第六章 結論與建議...........................................................150 6.1 結論....................................................................150 6.2 建議....................................................................153 參考文獻....................................................................155 附錄A 岩體之溫度分布.......................................................A-1 附錄B 岩體之應力分布.......................................................B-1 附錄C 岩體之位移方向.......................................................C-1 附錄D 飽和岩層之水流方向...................................................D-1

    1. 王文盛、郭文振,熱傳遞學(上),乾泰出版社,1978。
    2. 王俊明,高溫下脆性岩石之力學與物理性質,國立交通大學土木工程
    研究所碩士論文,1995。
    3. 林士哲,金崙地區溫泉資源調查分析之研究,國立成功大學資源工程
    研究所碩士論文,2003。
    4. 林宏明,石英砂岩與大理石的力學特性及組成律之研究,國立成功大
    學土木工程研究所碩士論文,1992。
    5. 林擎天,多孔介質之三維彈性理論解析,中華工學院土木工程研究所
    碩士論文,1994。
    6. 周業泗,飽和即未飽和地層傳輸行為之研究-以嘉義白水湖、蘭嶼貯存
    場為例,國立成功大學資源工程研究所碩士論文,1999。
    7. 洪錦雄、莊文壽、劉凌振、董家寶,我國用過核燃料長程處置潛在母
    岩特性調查與評估階段-前二年計畫,功能/安全評估研究-建立深層處
    置場初期功能評估技術(I),核能研究所,2001。
    8. 高世鍊,開挖中隧道變形行為之初步研究,國立成功大學土木工程研
    究所碩士論文,1998。
    9. 陳冠志,異質性土壤中二相流及溶質傳輸行為之研究,國立成功大學
    156
    資源工程研究所碩士論文,2000。
    10. 劉台生,TOUGH2 簡易使用手冊,工業技術研究院能源與資源研究
    所,2001。
    11. 潘國樑,應用環境地質學,地景出版社,1993。
    12. 賴成銑,洪浩源,我國用過核燃料長程處置潛在母岩特性調查與評估
    階段-發展初步功能/安全評估模式(第一年計畫)-地質圈評估技術,核
    能研究所,2002。
    13. 薛禹群,地下水動力學原理,地質出版社,1992。
    14. 戴豪君,深層岩體熱力-水力-力學偶合行為之初步研究,國立成功大
    學資源工程研究所碩士論文,2003。
    15. 鄺寶山、王文禮 FLAC程式於隧道工程之實例分析,地工技術,第41
    期,pp. 50-61,1993。
    16. 鍾柏仁,核廢料深層處置進場岩石熱力學行為初步研究,國立成功大
    學資源工程研究所碩士論文,2001。
    17. Aversa, S. and Evangelista, A., Thermal Expansion of Neapolitan Yellow
    Tuff. Rock Mech. & Rock Eng., Vol. 26, No. 4, pp.281-306, 1993.
    18. Bauer, S.J. and Johnson, B., Effects of Slow Uniform Heating on the
    Physical Properties of the Westerly and Charcoal Granites. Proc. 20th
    Symp. on Rock Mech., Austin, Texas, ASCE, pp.7-18, 1979.
    19. Bejan, A., Lage, J.L., Heat transfer from a surface covered with
    157
    hair.Convective Heat and Mass Transfer in Porous Media(eds. Kakac, S.,
    Kilkis, B., Kulacki, F.A., Arinc., F.), Kluwer Academic, Dordrecht,
    pp.823-845, 1991.
    20. Crank, J., The Mathematics of Diffusion: 2nd Edition, Oxford: Clarendon
    Press, 1975.
    21. Chijimatsu, M., Fujita, T., Sugita, Y., Amemiya, K., Kobyashi, A., Field
    experiment, results and THM behavior in the Kamaishi mine experiment.
    International Journal of Rock Mechanics and Mining Sciences, Vol. 38,
    pp.67-78, 2001.
    22. Faust, C.R., and Mercer, J.W., Summary of Our Research in Geothermal
    Reservoir Simulation, Proc. Workshop on Geothermal Reservior
    Engineering, Stanford University, Stanford, CA, SGP-TR-12, 1975.
    23. Félix, B., Lebon, P., Miguez, R. and Plas, F., A review of the ANDRA’s
    research programmes on the thermo-hydromechanical behavior of clay in
    connection with the radioactive waste disposal project in deep geological
    formations. Engineering Geology, Vol. 41, pp.35-50, 1996.
    24. Hanley, E.J., Dewitt, D.P. and Roy, R.F., The Thermal Diffusivity of Eight
    Well-Characterized Tocks for the Temperature Range 300-1000°K.
    Engineering Geology, Vol. 122, pp.31-47, 1978.
    25. Hoek, E. and Brown, E.T., Empirical Strength Criterion for Rock Masses.
    J. of the Geotechnical Engineering, ASCE, Vol. 106, NO. GT9,
    pp.1013-1035, 1980.
    26. Heuze, F.E., High Temperature Mechanical, Physical and Thermal
    Properties off Granitic Rock-A Review. Int. J. Rock Mech. Min. Sci. &
    158
    Geomech. Abstr., Vol. 20, No. 1, pp.3-10, 1983.
    27. Itasca Consulting Group, Inc., Fast Lagrangian Analysis of Continua in 3
    Dimensions User's Manual. Minneapolis, Minnesota, U.S.A., 1994.
    28. Jumikis, A.R., Rock Mechanics. 2nd Edition, Trans. Tech. Pubns.,
    Germany, 1983.
    29. KBS, Final Storage of Spent Nuclear Fuel—KBS-3. Swedish Nuclear Fuel
    Supply Co./Division KBS, Stockholm, Sweden, 1983.
    30. Nield, D.A., Bejan, A., Convection in porous media, Springer-Verlag,
    1992.
    31. Özisik, M.N., Heat Conduction. 2nd Edition, John Wiley & Sons Inc.,
    N.Y., 1993.
    32. Onofrei, C., Gray, M., Modelling hygro-thermo-mechanical behaviour
    ofengineered clay barriers–Validation phase. Engineering Geology, Vol. 41,
    pp.301-318, 1996.
    33. Pritchett, J.W., Numerical Calculation of Multiphase Fluid and Heat Flow
    in Hydrothermal Reservoirs, Proc. Workshop on Geothermal Reservoir
    Engineering, Stanford University, Stanford, CA, pp.201-205,SGP-TR-12,
    1975.
    34. Pruess, K., Zerazn., J.M. Schroeder., R. C. Witherspoon., Descripition of
    the Three Dimensional Two-Phase Simulator SHAFT78 for Use in
    Geothermal Reservoir Studies, paper SEP 7699, presented at the Fifth SPE
    Symposium on Reservoir Simulation, Denver, CO, February 1979.
    35. Pruess, K., and Schroeder., R.C., SHAFT 79 User’s Manual, Lawrence
    Berkeley Laboratory Report LBL-10861, Berkeley, CA, March 1980.
    36. Pruess, K., Oldenburg, C., Moridis, G., TOUGH2 User’s Guide, Version
    159
    2.0. Earth Sciences Division, Lawrence Berkeley National Laboratory,
    1999.
    37. Pusch, R., and Touret, O., Heat effects on soft Na bentonite gels.
    Geologiska Föreningens i Stockholm Förhandlinga, 110(2), PP.183-190,
    1988.
    38. Pusch, R., and Borgesson, L., PASS-Project on Alternative Systems Study.
    Performance Assessment of Bentonite Clay Barrier in Three Repository
    Concepts: VDH, KBS-3 and VLH, SKB, TR 92-40, Stockholm, Sweden,
    1992.
    39. Rutqvist, J., Börgesson, L., Chijimatsu, M., Nguyen, T.S., Jing, L.,
    Noorishad, J., Tsang, C.-F., Coupled thermo-hydro-mechanical analysis of
    aheater test in fractured rock and bentonite at Kamaishi Mine–comparison
    of field results to predictions of four finite element codes. International
    Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp.129-142,
    2001.
    40. Rutqvist, J., Wu, Y.-S., Tsang, C.-F. and Bodvarsson, G., A modeling
    approach for analysis of coupled multiphase fluid flow, heat transfer, and
    deformation in fractured porous rock. International Journal of Rock
    Mechanics and Mining Sciences, Vol. 39, pp.429-442, 2002.
    41. Rutqvist, J., Tsang, C.-F., Analysis of thermal-hydrologic-mechanical
    behavior near an emplacement drift at Yucca Mountain. Journal of
    Contaminant Hydrology, Vol. 62-63, pp.637-652, 2003.
    42. Rutqvist, J., Tsang, C.-F., TOUGH-FLAC: A numerical simulator for
    analysis of coupled thermal--hydrologic-mechanical processes in fractured
    and porous geological media under multi-phase flow conditions.
    160
    Proceedings, TOUGH Symposium 2003. Lawrence Berkeley National
    Laboratory, Berkeley ,California, May 12-14, 2003.
    43. Scheidegger, A.E., The Physics of Flow through Porous Media, University
    of Toronto Press, Toronto, 1974.
    44. Thunvik, R. and Braester, C., Heat Propagation from a Radioactive Waste
    Repository. SKB TR 91-61, Stockholm, 1991.
    45. Tsang, C.-F., Stephansson, O., and Hudson, J.A., A discussion of
    thermo-hydro-mechanical(THM)processes associated with nuclear waste
    repositories. International Journal of Rock Mechanics and Mining
    Sciences, Vol. 37, pp.397-402, 2000.
    46. Wai, R.S.C., Lo, K.Y. and Rowe, R.K., Thermal Stress Analysis in Tock
    with Nonlinear Properties. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.
    Vol. 19, pp.211-220, 1982.
    47. 行政院原子能委員會放射性物料管理局,
    (http://fcma.aec.gov.tw/chs_main.htm)

    下載圖示 校內:立即公開
    校外:2004-08-30公開
    QR CODE