| 研究生: |
蔡欣璇 Cai, Sin-Syuan |
|---|---|
| 論文名稱: |
以混合式循環模型模擬全腔靜脈肺動脈吻合術之血流動力流場 Hemodynamic Simulation of Total Cavopulmonary Connection Flow Using a Hybrid Circulation Model |
| 指導教授: |
陸鵬舉
Lu, Pong-Jeu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 全腔靜脈肺動脈吻合術 、混合式循環模型 、血流動力流場 |
| 外文關鍵詞: | Total Cavopulmonary Connection, Hybrid Circulation Model, Hemodynamic Flow Field. |
| 相關次數: | 點閱:62 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對單一心室心臟缺陷(Single Ventricle Heart Defects, SVHD)病患,可採取適當地階段性緩解(Palliative)手術來改善其血流動力學,其中最後階段的全腔靜脈肺動脈吻合術(Total Cavopulmonary Connection, TCPC)能重建動、靜脈血流的分流,達到體、肺循環分離及減少心室負擔的目的。但重建後的生理循環可能引起靜脈回流壓力(Venous Return Pressure)升高或左心前負荷(Preload)減少的問題,長此以往,可能造成蛋白質流失性腸病(Protein Losing Enteropathy)、肝水腫(Hepatic Congestion)、血栓栓塞(Thromboembolism)與運動能力降低(Diminished Exercise Capacity)等術後遠期併發症。本研究旨在發展包含三維TCPC血管模型與描述體肺循環之區塊參數模型(Lumped-Parameter Model)的混合式循環模型(Hybrid Circulation Model),並進行 TCPC血流動力特徵之探討。其中,三維流場模擬是採用 Ansys Fluent的隱式SIMPLE演算法來進行求解,並透過使用者自定義函數(User-Defined Function, UDF)來和區塊參數模型作結合,而區塊參數模型則是以顯式的四階 Runge-Kutta 法來進行時間步進(Time Stepping)。本研究成功驗證了混合式循環模型於TCPC三維血流動力模擬的收斂性,並探討在不同TCPC的吻合方式上對於流場功率損失的影響,由模擬結果得到因為腔靜脈的回流速度較小,因此對於TCPC流場的功率損失並無明顯的差異。
Hemodynamics improvement in patients with single ventricle heart defects could be accomplished by palliative surgical procedure. The purpose of the final stage surgery in total cavopulmonary connection is to reconstruct the arteriovenous shunt, as well as to separating systemic and pulmonary circulation and reduce ventricular loading. However, the increase in venous return pressure or decrease in left ventricular preload are common in these physiological circulation reconstruction, and ultimately lead to protein losing enteropathy, hepatic congestion, thromboembolism and diminished exercise capacity. It is important to optimize the TCPC flow to mitigate the abovementioned complications. Computational Fluid Dynamics has been adopted as the major analysis tool, in which both flow model and boundary condition specification are crucial. The present research proposed a hybrid circulation simulation model consisting of a continuous three-dimensional flow model and a lumped-parameter model. Three-dimensional flow field simulation uses Ansys Fluent with implicit SIMPLE algorithms in conjunction with a user-defined function to combine lumped-parameter model as the terminal boundary conditions. The lumped-parameter model is solved based on explicit fourth-order Runge-Kutta method for time stepping. A special iterative procedure connecting the Fluent solver and the lumped-parameter system is developed. The hybrid circulation model in three-dimensional hemodynamic simulation was successfully validated. The simulation results show that, for the studied cases, there is no significant difference in power loss for TCPC flow field due to velocity of venous return is too small.
[1]National Heart and Lung Institute, N.I.H. What Are Congenital Heart Defects?http://www.nhlbi.nih.gov/health/dci/Diseases/chd/chd_what.html August 2009.
[2]van der Linde D., Konings E. E., Slager M. A., Witsenburg M., Helbing W. A., Takkenberg J. J., and Roos-Hesselink J. W., “Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis,” Journal of the American College of Cardiology, Vol. 58, 2011, pp. 2241-2247.
[3]Hoffman J. I. and Kaplan S., “The incidence of congenital heart disease,” Journal of the American College of Cardiology, Vol. 39, 2002, pp. 1890-1900.
[4]Slesnick T. C. and Yoganathan A. P. “Computational modeling of Fontan physiology: at the crossroads of pediatric cardiology and biomedical engineering,” The International Journal of Cardiovascular Imaging, Vol. 30, No. 6, August 2014, pp. 1073-1084.
[5]Jacobs M. L. and Pelletier G., “Late complications associated with the Fontan circulation,” Cardiology in the Young, Vol. 16, No. 1, 2006, pp. 80-84.
[6]Marc Gewillig. “The Fontan Circulation,” Heart, Vol. 91, No. 6, June 2005, pp. 839-846.
[7]Fontan F. and Baudet E., “Surgical repair of tricuspid atresia,” Thorax, Vol. 26, No. 3, May 1971, pp. 240–248.
[8]d'Udekem Y., Iyengar A. J., Cochrane A. D., Grigg L. E., Ramsay J. M., Wheaton G. R., Penny D. J., and Brizard C. P., “The Fontan procedure: contemporary techniques have improved long-term outcomes,” Circulation Journal, Vol. 116, No. 11, September 2007, pp. 157-164.
[9]de Leval M. R. and Deanfield J. E., “Four decades of Fontan palliation,” Nature Reviews Cardiology, September 2010, Vol. 7, No. 9, pp. 520-527.
[10]Kreutzer G., Galíndez E., Bono H., De Palma C., and Laura J. P., “An operation for the correction of tricuspid atresia,” Journal of Thoracic and Cardiovascular Surgery, Vol. 66, No. 4, 1973, pp. 613-621.
[11]Lardo A. C., del Nido P. J., Webber S. A., Friehs I., and Cape E. G., “Hemodynamic effect of progressive right atrial dilatation in atriopulmonary connections,” Journal of Thoracic and Cardiovascular Surgery, Vol. 114, No. 1, 1997, pp. 2-8.
[12]de Leval M. R., Kilner P., Gewillig M., and Bull C., “Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience,” Journal of Thoracic and Cardiovascular Surgery, Vol. 96, No. 5, 1988, pp. 682-695.
[13]Nayak Sandeep and Booker P. D., “The Fontan circulation,” Continuing Education in Anaesthesia, Critical Care & Pain, Vol. 8, No. 1, 2008, pp. 26-30.
[14]Ostrow A. M., Freeze H., and Rychik J., “Protein-losing enteropathy after Fontan operation: investigations into possible pathophysiologic mechanisms,” The Annals of Thoracic Surgery, Vol. 82, 2006, pp. 695-700.
[15]de Leval M. R., Kilner P., Gewillig M., and Bull C., “Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations,” Journal of Thoracic and Cardiovascular Surgery, Vol. 96, 1988, pp. 682-695.
[16]Dubini G., de Leval M. R., Pietrabissa R., Montevecchi F. M., and Fumero R., “A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection,” Journal of Biomechanics, Vol. 29, 1996, pp. 111-121.
[17]de Leval M. R., Dubini G., Migliavacca F., Jalali H., Camporini G., Redington A., and Pietrabissa R., “Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections,” Journal of Thoracic and Cardiovascular Surgery, Vol. 111, 1996, pp. 502-513.
[18]Migliavacca F., de Leval M. R., Dubini G., Pietrabissa R., and Fumero R., “Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit,” Medical Engineering & Physics, Vol. 21, 1999, pp. 187-193.
[19]Sharma S., Goudy S., Walker P., Panchal S., Ensley A., Kanter K., Tam V., Fyfe D., and Yoganathan A., “In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle,” Journal of the American College of Cardiology, Vol. 27, 1996, pp. 1264-1269.
[20]Gerdes A., Kunze J., Pfister G., and Sievers H. H., “Addition of a small curvature reduces power losses across total cavopulmonary connections,” The Annals of Thoracic Surgery, Vol. 67, No. 6, 1999, pp. 1760-1764.
[21]Ensley A. E., Lynch P., Chatzimavroudis G. P., Lucas C., Sharma S., and Yoganathan A. P., “Toward designing the optimal total cavopulmonary connection: an in vitro study,” The Annals of Thoracic Surgery, Vol.68, 1999, pp. 1384-1390.
[22]Ryu K., Healy T. M., Ensley A. E., Sharma S., Lucas C., and Yoganathan A. P., “Importance of accurate geometry in the study of the total cavopulmonary connection: computational simulations and in vitro experiments,” Annals of Biomedical Engineering, Vol. 29, No. 10, 2001, pp. 844-853.
[23]Soerensen D. D., Pekkan K., de Zelicourt D., Sharma S., Kanter K., Fogel M., and Yoganathan A. P., “Introduction of a new optimized total cavopulmonary connection,” The Annals of Thoracic Surgery, Vol. 83, 2007, pp. 2182-2190.
[24]Marsden A. L., Bernstein A. J., Reddy V. M., Shadden S. C., Spilker R. L., Chan F. P., Taylor C. A., and Feinstein J. A., “Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics,” Journal of Thoracic and Cardiovascular Surgery, Vol. 137, No. 2, February 2009, pp. 394-403.
[25]Baretta A., Corsini C., Marsden A. L., Vignon-Clemente I., Hsia T.-Y., Dubini G., Migliavacca F., and Pennati G., “Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions” European Journal of Mechanics, Vol. 35, September 2012, pp.61-69.
[26]Milnor, W. R., Hemodynamics, Williams & Wilkins, 1989.
[27]Stergiopulos, N., Westerhof, B. E., and Westerhof, N., “Total Arterial Inertance as the Fourth Element of the Windkessel Model,” American Journal of Physiology, Vol. 276, 1999, pp. H81-H88.
[28]Liang F., Senzaki H., Yin Z., Fan Y., Sughimoto K., and Liu H., “Transient Hemodynamic Changes upon Changing a BCPA into a TCPC in Staged Fontan Operation: A Computational Model Study,” The Scientific World Journal, November 2013, pp. 486-815.
[29]Liang F., Senzaki H., Kurishima C., Sughimoto K., Inuzuka R., and Liu H., “Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study,” American Journal of Physiology: Heart and Circulatory Physiology, Vol. 307, No. 7, October 2014, pp. 1056-1072.
[30]Liang F., Takagi S., Himeno R., and Liu H., “Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenosis,” Medical & Biological Engineering & Computing, Vol. 47, No. 7, July 2009, pp. 743-755.
[31]Ohuchi H., Yasuda K., Miyazaki A., Kitano M., Sakaguchi H., Yazaki S., Tsuda E., and Yamada O., “Haemodynamic characteristics before and after the onset of protein losing enteropathy in patients after the Fontan operation,” European Journal of Cardio-Thoracic Surgery, Vol. 43, 2013, pp. 49-57.
[32]Ohuchi H., Miyazaki A., Watanabe T., Yamada O., Yagihara T., and Echigo S., “Hemodynamic deterioration during simulated supraventricular tachycardia in patients after the Fontan operation,” International Journal of Cardiology, Vol. 117, 2007, pp. 381-387.
[33]Krishnan U. S., Taneja I., Gewitz M., Young R., and Stewart J., “Peripheral vascular adaptation and orthostatic tolerance in Fontan physiology,” Circulation Journal, Vol. 120, 2009, pp. 1775-1783.
[34]The Royal Children's Hospital Melbourne. Division of Surgery. Cardiology.http://www.rch.org.au/cardiology/heart_defects/Tricuspid_Atresia