| 研究生: |
賴冠宇 Lai, Kuei-Yui |
|---|---|
| 論文名稱: |
以電化學式微流體晶片之胞吐組織胺的線上監測 Monitoring of Histamine Exocytosis from Cultured Cell Model by Using an Electrochemical Microfluidic Chip |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 過敏反應 、組織胺 、微孔電極 、微流體晶片 |
| 外文關鍵詞: | Allergy, Histamine, Microwell electrode, Microfluidic Chip |
| 相關次數: | 點閱:137 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
組織胺是引起過敏反應的主要物質之一,儲存於肥大細胞與嗜鹼性白血球的微粒中,臨床症狀包括氣喘、過敏性鼻炎、蕁麻疹,甚至休克等。在臨床上多以過敏原與特異性抗體進行體內皮膚試驗和體外血清過敏抗體進行診斷;然而,檢測過敏原與抗體僅能代表該個體對特定過敏原具有臨床反應,無法判定過敏反應發生之原因與其嚴重程度。因此本研究期望透過電化學檢測技術,針對細胞受到刺激後胞吐所釋放出的組織胺進行即時性偵測,藉以觀察並評估過敏反應時細胞的生理狀態。
研究共分為兩個部分: (1)以懸浮型人類嗜鹼性白血球細胞株(KU-812)為細胞模型,於鈣離子載體(calcium ionophore, A23187)刺激下釋放組織胺,並透過組織胺與o-phthalaldehyde (OPA)形成之複合物具螢光之特性,以冷光分析儀檢測組織胺釋放量。(2)開發電化學式微流體細胞檢測晶片,利用流力及自然沉降的力量將懸浮型KU-812細胞捕捉並安置於微孔電極(microwell electrode, MWE)中,以安培偵測法(+0.75 V vs. Ag/AgCl)進行組織胺分泌的電化學即時偵測。
從螢光檢測結果得知平均單一KU-812細胞內總組織胺含量約10~12 fmol,刺激30 min後分泌量約3~5 fmol。而微孔晶片實驗中,每次捕捉到1~3個細胞,刺激1~2 min後可觀測到一些不連續之突波電流(current spikes),其響應電流約數個至數十個pA不等,響應時間約0.6~0.8 sec且持續約1 min。顯微鏡下觀察有突波個案者,其受測細胞均有胞吐的現象產生,將累積的突波電流之總電量進行計算,平均每個細胞約貢獻總電量2,000±200 pC,換算後約有6.7~26.8 fmol的組織胺被電極偵測到。本研究以電化學式微流體細胞檢測晶片,提供懸浮型細胞良好的檢測平台,未來可應用於模擬與評估不同類型細胞之生理狀態。
Histamine, which causes allergic inflammatory reactions, is one of the principal ingredients of mast cell and basophilic cell granules, and produces clinical syndromes that include asthma, rhinitis, urticaria, and even shock. The diagnosis of an antigen combined with a specific antibody is usually done through skin testing and blood testing in clinics. However, both tests are unable to judge the degree of damage when an allergy takes place, and only represent the clinical response for the individual. In this study, we used fluorometric assay to detect the coupling of histamine released from KU-812 with o-phthalaldehyde (OPA) and the resultant formation of a fluorescent product. For this, we developed an electrochemical cellular chip for continuous monitoring of histamine exocytosis from the suspension KU-812 cells. We found a low flow velocity area (LFVA) at the bottom of a microwell electrode (MWE), which could stabilize the trapped cell in a continuous flow, where the cells were accommodated and stabilized the MWE by the operation of hydraulic and gravitational forces. The released histamine was detected (+0.75 V vs. Ag/AgCl) by the MWE. Fluorescent result showed that each KU-812 cell contained 10~12 fmol histamine, and released 38% after being stimulated with calcium ionophore for 30 min, about 3~5 fmol. For amperometric detection of exocytosis at KU-812 cells, a noncontinuous current with randomly occurring spikes that had an average area of 2,000±200 pC and average histamine release of 6.7~26.8 fmol per cell was observed. Also, the exocytosis signals appeared after stimulated for 1~2 min, due to the exocytotic activity that can be stimulated by calcium ionophore by increasing the Ca2+ influx into cytoplasm. Both advantages of active (hydraulic) and passive (gravitational) traps were integrated in the proposed chip to avoid cells that were excited. The investigated cell could be stabilized within the MWE for electrochemical detection. Histamine was detected by the MWE, and oxidation current spikes still could be observed in A23187 stimulus, which can be used for living suspension cells detection. A spiked amperogram was recorded in activated KU-812 cells, and the spike current suggested the histamine release from exocytotic events. The proposed device demonstrated a capability for KU-812 cell analysis. The techniques presented here may be helpful for suspension cell array manipulation and electrochemical measurement for cell biological studies.
1. K. Tasaka, New advances in histamine research, 1st ed., Tokyo, Springer Verlag, New York: 1994
2. M. A. Kaliner, D. D. Metcalfe,The mast cell in health and disease, 1st ed., Marcel Dekker Inc., New York: 1992
3. J. C. Foreman, Immunopharmacology of mast cells and basophils, 1st ed., London, Academic Press, San Diego: 1993
4. G. Marone, Human basophils and mast cells: clinical aspects, 1st ed., Basel, Karger, New York: 1995
5. D. J. Chadwick, J. Goode, Mast cells and basophils: development, activation, and roles in allergic/autoimmune disease, 1st ed., Chichester, John Wiley, Hoboken, NJ: 2005
6. I. M. Roitt, J. Brostoff, D. K. Male., Immunology, 2nd ed., Mosby, London, Gower, New York: 1989
7. R. Lewis, Life, 3rd ed., McGraw Hill, New York: 1998
8. A. J. Bard, L. R. Faulkner, Electrochemical methods fundamentals and applications, 2nd ed., Chichester, John Wiley, Hoboken, NJ: 2001
9. T. V. Rajan, The Gell-Coombs classification of hypersensitivity reactions a re-interpretation, Trends Immunol, 2003, 24, 376-79
10. C. Prussin, D. D. Metcalfe, IgE, mast cells, basophils, and eosinophils, J Allergy Clin Immunol, 2003, 111, 486-94
11. J. Stephen, Mast cells and basophils, Curr Opin Hematol, 2000, 7, 32-39
12. R. Hiller, S. Laffer, C. Harwanegg, M. Huber, W. M. Schmidt, A. Twardosz, B. Barletta, W. M. Becker, K. Blaser, H. Breiteneder, M. Chapman, R. Crameri, M. Duchêne, F. Ferreira, H. Fiebig, K. H. Sommergruber, T. P. King, T. K. Janke, V. P. Kurup, S. B. Lehrer, J. Lidholm, U. Müller, C. Pini, G. Reese, O. Scheiner, A. Scheynius, H. D. Shen, S. Spitzauer, R. Suck, I. Swoboda, W. Thomas, R. Tinghino, M. V. H. Hamsten, T. Virtanen, D. Kraft, M. W. Müller, R. Valenta, Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment, The FASEB Journal, 2002, 16, 414-16
13. J. Lin, P. R. Shewry, D. B. Archer, K. Beyer, B. Niggemann, H. Haas, P. Wilson, M. J.C. Alcocer, The potential allergenicity of two 2S albumins from soybean (glycine max): a protein microarray approach, Int Arch Allergy Immunol, 2006, 141, 91-102
14. J. Rivera, J. R. Cordero, Y. Furumoto, Macromolecular protein signaling complexes and mast cell responses: a view of the organization of IgE-dependent mast cell signaling, Mol Immunol, 2001, 38, 1253-58
15. C. Tkaczyk, A. M. Gilfillan, FcRI-dependent signaling pathways in human mast cells, Clin Immunol, 2001, 99, 198-210
16. D. Lawson, C. Fewtrell, B. Gomperts, M. C. Raff, Anti-immunoglobulin-induced histamine secretion by rat peritoneal mast cells studied by immunoferritin electron microscopy, J Exp Med, 1975, 142, 391-402
17. J. W. Deitmer, A. J. Verkhratsky, C. Lohr, Calcium signaling in glial cells, Cell Calcium, 1998, 24, 405-16
18. R. D. Burgoyne, M. J. Clague, Clacium and calmodulin in membrane fusion, Biochim Biophys Acta, 2003, 1641, 137-43
19. M. Hoth, R. Penner, Depletion of intracellular calcium stores activates a calcium current in mast cells, Nature, 1992, 355, 353-56
20. T. T. Ching, A. L. Hsu, A. J. Johnson, Phosphoinositide 3-kinase facilitates antigen-stimulated Ca2+ influx in RBL-2H3 mast cells via a phosphatidylinositol 3,4,5-trisphosphate-sensitive Ca2+ entry mechanism, J Biol Chem, 2001, 276, 14814-20
21. P. Rohlich, P. Anderson, B. J. Uvnas, Electron microscope observations on compound 48/80-induced degranulation in rat mast cells, J Cell Biol, 1971, 51, 465-83
22. N. C. Moran, B. Uvnas, B. Westerholm, Release of 5-HT and histamine from mast cells, Acta Physiol Scand, 1962, 56, 26-41
23. J. C. Foreman, J. L. Mongar, B. D. Gomperts, Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process, Nature, 1973, 245, 249-51
24. B. J. Abbott, D. S. Fukuda, D. E. Dorman, J. L. Occolowitz, M Debona, L. Farhner, Microbial transformation of A23187, a divalent cation ionophore antibiotic, Antimicrob Agents Chemother, 1979, 16, 808-16
25. R. Heidelberger, G. Mattews, Inhibition of calcium influx and calcium current by gamma-aminobutyric acid in single synaptic terminals, Proc Nati Acad Sci, 1991, 88, 7135-39
26. L. Maintz, N. Novak, Histamine and histamine intolerance, Am J Clin Nutr, 2007, 85, 1185-96
27. D. Lagunoff, E. Y. Chi, Mast cell secretion: membrane events, J Invest Dermat, 1978, 71, 81-84
28. K. L. Barrell, F. L. Pearce, A comparison of histamine secretion from isolated peritoneal mast cells of the mouse and rat, Int Archs Allergy appl Immun, 1983, 71, 234-38
29. D. L. Walters, J. E. James, F. B. Vest, H. T. Karnes, A comparison of fluorescence versus chemiluminescence detection for analysis of the fluorescamine derivative of histamine by HPLC, Biomed Chromatogr, 1994, 5, 207-11
30. T. Yoshitake, F. Ichinose, H. Yoshida, K. Todoroki, J Kehr, O. Inoue, H. Nohta, M. Yamaguchi, A sensitive and selective determination method of histamine by HPLC with intramolecular excimer-forming derivatization and fluorescence detection, Biomed Chromatogr, 2003, 17, 509-16
31. K. Plhel, S. Hsieh, J. W. Jorgenson, R. M. Wightman, Electrochemical detection of histamine and 5-hydroxytryptamine at isolated mast cells, Anal Chem, 1995, 67, 4514-21
32. T. Katsu, H. Hirodo, Determination of histamine release from mast cells using a histamine-sensitive membrane electrode, Anal Chim Acta, 1999, 396, 189-93
33. H. Morita, M. Konishi, Electrogenerated chemiluminescence derivatization reagents for carboxylic acids and amine in high-performanceliquid chromatography using tris (2, 2-bipyridine) ruthenium (II), Anal Chem, 2002, 74, 1584-88
34. S. A. Raspopov, A. E. Faramawy, B. A. Thomson, K. W. M. Siu, Infrared multiphoton dissociation in quadrupole time-of-flight mass spectrometry: top-down characterization of proteins, Anal Chem, 2006, 78, 4572-77
35. L. M. Lichtenstein, P. S. Norman, J. T. Connell, Comparison between skin-sensitizing antibody titers and leukocyte sensitivity measurements as an index of the severity of ragweed hay fever, J Allergy, 1967, 40, 160-67
36. P. A. Shore, A. Burkhalter, V. H. Cohn, A method for the fluorometric assay of histamine in tissues, J Pharmacol Exp Ther January, 1959, 127, 182-86
37. L. Juhlin, W. B. Shelley, Detection of histamine by a new fluorescent o-phthalaldehyde stain, J Histochem Cytochem, 1966, 14, 525-28
38. Z. Z. Zhao, P. B. Sugerman, L. J. Walsh, N. W. Savage, A fluorometric microassay for histamine release from human gingival mast cells, J Periodont Res, 2001, 36, 233-36
39. B. J. Marquis, A. D. McFarland, K. L. Braun, C. L. Haynes, Dynamic measurement of altered chemical messenger secretion after cellular uptake of nanoparticles using carbon-fiber microelectrode amperometry, Anal Chem, 2008, 80, 3431-37
40. T. Kaya, K. Nagamine, N. Matsui, T. Yasukawa, H. Shiku, T. Matsue, On-chip electrochemical measurement of bata-galactosidase expression using a microbial chip, Chem Commun, 2004, 2, 248-49
41. K. P. Troyer, R. M. Wightman, Temporal separation of vesicle release from vesicle fusion during exocytosis, J Bio Chem, 2002, 277, 29101-07
42. K. Pihel, S. Hsieh, J. W. Jorgenson, R. M. Wightman, Quantal corelease of histamine and 5-hydroxytryptamine from mast cells and the effects of prior incubation, Biochemistry, 1998, 37, 1046-52
43. J. M. Finnegan, K. Pihel, P. S. Cahill, L. Huang, S. E. Zerby, A. G. Ewing, R. T. Kennedy, R. M. Wightman, Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic beta-cells, J Neurochem, 1996, 66, 1914-23
44. B. J. Marquis, C. L. Haynes, The effects of co-culture of fibroblasts on mast cell exocytotic release characteristics as evaluated by carbon-fiber microelectrode amperometry, Biophys Chem, 2008, 137, 63-69
45. J. Lin, N. Renault, H. Haasw, G. Schrammw, S. Viethsz, L. Vogelz, F. H. Falcone, M. J. C. Alcocer, A novel tool for the detection of allergic sensitization combining protein microarrays with human basophils, Clin Exp Allergy, 2007, 37, 1854-62
46. W. Z. Yang, J. Y. Chen, J. T. Yu, L. W. Zhou, Effects of low power laser irradiation on intracellular calcium and histamine release in RBL-2H3 mast cells, Photochem Photobiol, 2007, 83, 979-74
47. F. Wantke, D. W. MacGlashan, J. M. Langdon, S. M. MacDonald, The human recombinant histamine releasing factor: functional evidence that it does not bind to the IgE molecule, J Allergy Clin Immunol, 1999, 103, 642-28
48. L. Kim, Y. C. Toh, J. Voldman, H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells, Lab Chip, 2007, 7, 681-94
49. G. M. Walker, H. C. Zeringue, D. J. Beebe, Microenvironment design considerations for cellular scale studies, Lab Chip, 2004, 4, 91-97
50. H. Yu, I. Meyvantsson, I. A. Shkel, D. J. Beebe, Diffusion dependent cell behavior in microenvironments, Lab Chip, 2005, 5, 1089-95
51. S. Amemiya, J. Guo, H. Xiong, D. A. Gross, Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond, Anal Bioanal Chem, 2006, 386, 458-71
52. C. Amatore, S. Arbault, Y. Chen, C. Crozatier, F. Lemaitre, Y. Verchier, Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events, Angew Chem Int Ed, 2006, 45, 4000-03
53. H. F. Cui, J. S. Ye, Y. Chen, S. C. Chong, X. Liu, T. M. Lim, F. S. Sheu, In situ temporal detection of dopamine exocytosis from l-dopa-incubated MN9D cells using microelectrode array-integrated biochip, Sens Actuators B: Chem, 2006, 115, 634-41
54. P. Chen, B. Xu, N. Tokranova, X. Feng, J. Castracane, K. D. Gillis, Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips, Anal Chem, 2003, 75, 518-24
55. J. R. Rettig, A. Folch, Large-scale single-cell trapping and imaging using microwell arrays, Anal Chem, 2005, 77, 5628-34
56. X. Sun, K. D. Gillis, On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes, Anal Chem, 2006, 78, 2521-25
57. C. Spégel, A. Heiskanen, J. Acklid, A. Wolff, R. Taboryski, J. Emnéus, T. Ruzgas, On-chip determination of dopamine exocytosis using mercaptopropionic acid modified microelectrodes, Electroanalysis, 2007, 19, 263-71
58. C. Y. Chang, Y. Takahashi, T. Murata, H. Shiku, H. C. Chang, T. Matsue, Entrapment and measurement of a biologically functionalized microbead with a microwell electrode, Lab Chip, 2009, 9, 1185-92
59. C. Amatore, S. Arbault, M. Guille, F. Lemaitre, Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress, Chem Rev, 2008, 108, 2585-621
60. J. Voldman, Engineered systems for the physical manipulation of single cells, Curr Opin Biotechnol, 2006, 17, 532-37
61. C. E. Sims, N. L. Allbritton, Analysis of single mammalian cells on-chip, Lab Chip, 2007, 7, 423-40
62. J. E. Ali, P. K. Sorger, K. F. Jensen, Cells on chips, Nature, 2006, 442, 403-11
63. M. Deutsch, A. Deutsch, O. Shirihai, I. Hurevich, E. Afrimzon, Y. Shafran, N. Zurgil, A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells, Lab Chip, 2006, 6, 995-1000
64. B. M. Taff, J. Voldman, A scalable addressable positive-dielectrophoretic cell-sorting array, Anal Chem, 2005, 77, 7976-83
65. P. Y. Chiou, A. T. Ohta, M. C. Wu, Massively parallel manipulation of single cells and microparticles using optical images, Nature, 2005, 436, 370-72
66. A. Schulte, W. Schuhmann, Single-cell microelectrochemistry, Angrw Chem Int Ed, 2007, 46, 8760-77
67. T. Fukuda, K. Kishi, Y. Ohnishi, A. Shibata, Bipotential cell differentiation of KU-812: evidence of a hybrid cell line that differentiates into basophils and macrophage-like cells, Blood, 1987, 70, 612-19
68. D. W. M. Arrigan, Nanoelectrodes, nanoelectrode arrays and their applications, Analyst, 2004, 129, 1157-65
69. 張景裕, 電化學式單細胞分泌即時監測系統之開發, 國立成功大學/醫學工程研究所博士論文, 2007