簡易檢索 / 詳目顯示

研究生: 毛姝涵
Mao, Su-Han
論文名稱: 小分子核糖核酸196a在細胞模式以及動物模式對神經型態的影響
Effects of MiR-196a on Neuronal Morphology in vitro and in vivo
指導教授: 楊尚訓
Yang, Shang-Hsun
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 84
中文關鍵詞: 小分子核醣核酸196a神經細胞發育神經型態Ranbp10
外文關鍵詞: miR-196a, neuronal development, neuronal morphology, Ranbp10
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小分子核醣核酸由小片段且不會轉譯成蛋白質的核醣核酸所組成,其對基因的調控在神經細胞發育扮演很重要的腳色,神經的發育階段包含了神經軸突前端生長錐的建構、神經樹突上神經突的形成、以及神經軸突的生長。在我們實驗室先前的研究指出其中一種小分子核醣核酸「小分子核醣核酸196a」在細胞、基因轉殖小鼠以及從患者身上取得的誘導性多功能幹細胞等亨丁頓舞蹈症模型中,皆發現此疾病有被改善的情形,然而目前對於小分子核醣核酸196a在亨丁頓舞蹈症的神經保護機制仍是不清楚的,而在近年的研究指出維持好的神經型態是神經保護的機制之一。我們推測小分子核醣核酸196a可能透過提升神經的型態來改善亨丁頓舞蹈症因神經退化產生的症狀,在本篇研究中,我們發現小分子核醣核酸196a在細胞模式中能夠加強神經軸突的生長以及促進細胞內的順行運輸,此外,在小分子核醣核酸196a基因轉殖小鼠模式中,基因轉殖小鼠有較好的神經軸突的生長以及在海馬迴有較強的長期增益效應現象,並且有較優秀的學習記憶行為。為了更深入探討小分子核醣核酸196a的作用機制,我們利用生物資訊學找到了其中一個在血小板中與微管建構平衡有關的蛋白質Ran-binding protein 10 (Ranbp10),我們發現小分子核醣核酸196a能夠藉由抑制Ranbp10的表現來促進beta-微管蛋白的表現及建構。相對的,大量表現Ranbp10會阻斷beta-微管蛋白的建構,並且抑制神經軸突的生長以及細胞內逆行運輸。為了能夠進一步在動物模式證實Ranbp10對神經型態的影響,我們產出高度表現Ranbp10的基因轉殖小鼠,並發現此基因小鼠有較差的神經軸突的生長趨勢。綜合我們的研究結果,我們發現小分子核醣核酸196a能夠藉由抑制Ranbp10表現來提升神經軸突的生長,而使得神經有較好的型態,也因此我們期許在未來這個發現能夠提供亨丁頓舞蹈症的治療策略方向。

    MicroRNAs (miRNAs), non-protein-coding RNA molecules, play an important role at different stages of neuronal development, including growth cone organization, spine formation, and neurite outgrowth. Our previous data indicates that a specific miRNA, miR-196a, ameliorates phenotypes of Huntington’s disease (HD). However, the protective mechanism of miR-196a in HD is still unknown. Maintaining the neuronal morphology is one of the potential neuroprotective mechanisms. We hypothesize miR-196a might promote neuronal morphology and regulate resulting phenotypes. In this study, we discovered miR-196a enhanced neurite outgrowth in both neuroblastoma cell and transgenic mouse models. In addition, miR-196a promoted anterograde transport. Furthermore, miR-196a transgenic mice not only expressed stronger long-term potentiation in hippocampal CA1 but also appeared more advantageous functions of learning and memory than the non-transgenic mice. To understand the mechanisms, we used bioinformatics and identified a target gene, Ran-binding protein 10 (Ranbp10), which is related to microtubule equilibrium in platelet. We discovered that miR-196a suppressed the expression of Ranbp10 and promoted beta-tubulin organization. On the contrary, overexpression of Ranbp10 impaired the expression profiling of beta-tubulin and decreased neurite outgrowth and retrograde transport. Furthermore, we generated Ranbp10 transgenic mice and discovered the suppression of neurite outgrowth in the mice. In summary, our results suggest miR-196a improves neurite outgrowth through alteration of Ranbp10. Therefore, we anticipate this study will provide a potential therapeutic direction for HD.

    Abstract.................................I 中文摘要.................................II Acknowledgments..................................III Contents.......................................IV Figure Contents...................................VII Chapter 1. Introduction..............................1 1.1 Neuronal morphology and cytoskeleton................1 1.1.1 Neuronal polarization......................2 1.1.2 Neurite outgrowth.........................4 1.1.3 Spine formation.........................5 1.1.4 Synaptic plasticity.........................6 1.1.5 Transport............................7 1.2 The regulatory genes of neuronal morphology.............9 1.2.1 Neuronal disease-related genes.................9 1.2.2 Cytoskeleton-related gene....................10 1.3 The regulatory microRNAs of neuronal morphology.........11 1.3.1 Neurite and spine structure-related miRNAs..........12 1.3.2 Plasticity-related miRNAs...................12 1.3.3 MiR-196a and neuronal morphology..............13 Chapter 2. Objective and specific aims......................15 2.1 Research rationales and hypothesis................15 2.2 Specific aims.............................16 Chapter 3. Materials and methods......................17 3.1 DNA construction..........................17 3.2 DNA transformation..........................17 3.3 Plasmid DNA extraction .......................18 3.4 N2a Cell culture............................19 3.5 Primary cortical neuron culture...................19 3.6 Transfection..............................20 3.7 Microtubule polymerization.....................21 3.8 Western blotting............................22 3.9 Immunofluorescence staining.....................24 3.10 Transgenic mice...........................24 3.11 Genotyping for transgenic mice....................25 3.12 Golgi stain...............................26 3.13 Animal behavior test.........................27 3.14 Electrophysiology...........................28 3.15 Live cell imaging...........................29 3.16 Statistical analysis..........................30 Chapter 4. Results...............................31 4.1 The effects of miR-196a on neurite outgrowth in vitro and in vivo..31 4.2 The effects of miR-196a on microtubule polymerization in vitro...32 4.3 The effects of miR-196a on intracellular transport in vitro......34 4.4 The effects of miR-196a on synaptic plasticity...........34 4.5 The effect of miR-196a on learning and memory functions......35 4.6 The suppression of Ranbp10 by miR-196a..............36 4.7 The suppression of neurite outgrowth by overexpression of Ranbp10 in vitro.................................37 4.8 The effects of Ranbp10 on microtubule polymerization........38 4.9 The suppression of intracellular transport by overexpression of Ranbp10...............................39 4.10 Production of Ranbp10 transgenic mice...............40 4.11 The suppression of neurite outgrowth by Ranbp10 in vivo.....41 Chapter 5. Discussion..............................42 5.1 New findings from this thesis.....................42 5.2 The effects of miR-196a and Ranbp10 on microtubule polymerization ............................42 5.3 The effects of miR-196a and Ranbp10 on intracellular transport...44 5.4 The effects of miR-196a on synaptic plasticity and behavior function...............................45 5.5 The future work...........................46 Chapter 6. Conclusion.............................48 Chapter 7. Reference..............................49 Chapter 8. Figures..............................61 Figure 1. The effects of miR-196a on neurite outgrowth in primary cortical neurons...............................61 Figure 2. The effects of miR-196a on neurite outgrowth in miR-196a transgenic mice...........................63 Figure 3. The effects of miR-196a on microtubule polymerization in N2a cells ....................................65 Figure 4. The effects of miR-196a on intracellular transport in N2a cells ....................................67 Figure 5. The effects of miR-196a on hippocampus CA-1 LTP ....................................69 Figure 6. The effects of miR-196a on memory function through the tests of T-maze........ ........................70 Figure 7. The effects of miR-196a on learning memory function through the tests of novel objective recognition.................71 Figure 8. The suppression of Ranbp10 and the promotion of -tubulin by miR-196a in N2a cells.........................72 Figure 9. The suppressing effect of Ranbp10 on neurite outgrowth in N2a cells.................................74 Figure 10. The suppressing effect of Ranbp10 on neurite outgrowth in primary cortical neurons...........................76 Figure 11. The effects of Ranbp10 on microtubule polymerization in N2a cells ....................................77 Figure 12. The suppressing effect of Ranbp10 on transport in N2a cells ....................................79 Figure 13. Expression of Ranbp10 in Ranbp10 transgenic mice ....................................81 Figure 14. The effects of Ranbp10 on neurite outgrowth in Ranbp10 transgenic mice..................................82

    Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature reviews Molecular cell biology 9:309-322.
    Amin ND, Bai G, Klug JR, Bonanomi D, Pankratz MT, Gifford WD, Hinckley CA, Sternfeld MJ, Driscoll SP, Dominguez B, Lee KF, Jin X, Pfaff SL (2015) Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science 350:1525-1529.
    Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive Processing 13:93-110.
    Barton NR, Goldstein LS (1996) Going mobile: microtubule motors and chromosome segregation. Proceedings of the National Academy of Sciences of the United States of America 93:1735-1742.
    Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Current opinion in neurobiology 4:389-399.
    Bergmann HC, Daselaar SM, Fernandez G, Kessels RP (2016) Neural substrates of successful working memory and long-term memory formation in a relational spatial memory task. Cognitive Processing.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39.
    Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of physiology 232:331-356.
    Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nature reviews Neuroscience 13:478-490.
    Chazeau A, Giannone G (2016) Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cellular and molecular life sciences : CMLS 10.1007/s00018-016-2214-1.
    Cheng PH, Chang YF, Mao SH, Lin HL, Chen CM, Yang SH (2016) Lentiviral transgenesis in mice via a simple method of viral concentration. Theriogenology.
    Cheng PH, Li CL, Chang YF, Tsai SJ, Lai YY, Chan AW, Chen CM, Yang SH (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. American journal of human genetics 93:306-312.
    Chevalier-Larsen E, Holzbaur EL (2006) Axonal transport and neurodegenerative disease. Biochimica et biophysica acta 1762:1094-1108.
    Chiu H, Alqadah A, Chang C (2014) The role of microRNAs in regulating neuronal connectivity. Frontiers in cellular neuroscience 7:283.
    Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nature reviews Neuroscience 10:319-332.
    Curcio M, Bradke F (2015) Microtubule Organization in the Axon: TRIM46 Determines the Orientation. Neuron 88:1072-1075.
    D'Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nature neuroscience 14:69-76.
    Deacon RM, Rawlins JN (2006) T-maze alternation in the rodent. Nature protocols 1:7-12.
    Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome biology 6:204.
    Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harbor perspectives in biology 10.1101/cshperspect.a001800.
    Dent EW, Kalil K (2001) Axon branching requires interactions between dynamic microtubules and actin filaments. The Journal of neuroscience : the official journal of the Society for Neuroscience 21:9757-9769.
    Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nature reviews Neuroscience 4:456-468.
    Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086-1089.
    Drake PF, Lasek RJ (1984) Regional differences in the neuronal cytoskeleton. The Journal of neuroscience : the official journal of the Society for Neuroscience 4:1173-1186.
    Eira J, Silva CS, Sousa MM, Liz MA (2016) The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 141:61-82.
    Encalada SE, Goldstein LS (2014) Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annual review of biophysics 43:141-169.
    Fan Y, Fan J, Huang L, Ye M, Huang Z, Wang Y, Li Q, Huang J (2015) Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. International journal of clinical and experimental pathology 8:4132-4137.
    Femenia T, Magara S, DuPont CM, Lindskog M (2015) Hippocampal-Dependent Antidepressant Action of the H3 Receptor Antagonist Clobenpropit in a Rat Model of Depression. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP) 10.1093/ijnp/pyv032.
    Fiore R, Siegel G, Schratt G (2008) MicroRNA function in neuronal development, plasticity and disease. Biochimica et biophysica acta 1779:471-478.
    Flaumenhaft R (2009) Getting in shape with RanBP10. Blood 114:5412-5413.
    Fletcher DA (2010) Cell mechanics and the cytoskeleton. 463:485-492.
    Fu MH, Li CL, Lin HL, Tsai SJ, Lai YY, Chang YF, Cheng PH, Chen CM, Yang SH (2015) The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses. PloS one 10:e0137637.
    Gordon-Weeks PR, Fournier AE (2014) Neuronal cytoskeleton in synaptic plasticity and regeneration. Journal of neurochemistry 129:206-212.
    Gu QH, Yu D, Hu Z, Liu X, Yang Y, Luo Y, Zhu J, Li Z (2015) miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. 6:6789.
    Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519-526.
    Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610-638.
    Hirokawa N, Pfister KK, Yorifuji H, Wagner MC, Brady ST, Bloom GS (1989) Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56:867-878.
    Hlushchenko I, Koskinen M, Hotulainen P (2016) Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity. Cytoskeleton 10.1002/cm.21280.
    Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nature reviews Neuroscience 10:647-658.
    Hosono K, Noda S, Shimizu A, Nakanishi N, Ohtsubo M, Shimizu N, Minoshima S (2010) YPEL5 protein of the YPEL gene family is involved in the cell cycle progression by interacting with two distinct proteins RanBPM and RanBP10. Genomics 96:102-111.
    Hotulainen P, Hoogenraad CC (2010) Actin in dendritic spines: connecting dynamics to function. The Journal of cell biology 189:619-629.
    Hou Q, Ruan H, Gilbert J, Wang G, Ma Q, Yao WD, Man HY (2015) MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity. Nature communications 6:10045.
    Hu YB, Dammer EB, Ren RJ, Wang G (2015) The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Translational neurodegeneration 4:18.
    Isenmann S, Khew-Goodall Y, Gamble J, Vadas M, Wattenberg BW (1998) A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Molecular biology of the cell 9:1649-1660.
    Ishikawa H, Bischoff R, Holtzer H (1968) Mitosis and intermediate-sized filaments in developing skeletal muscle. The Journal of cell biology 38:538-555.
    Ka M, Jung EM, Mueller U, Kim WY (2014) MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling. Developmental biology 395:4-18.
    Ka M, Kim WY (2015) Microtubule-Actin Crosslinking Factor 1 Is Required for Dendritic Arborization and Axon Outgrowth in the Developing Brain. Molecular neurobiology.
    Kaech S, Ludin B, Matus A (1996) Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron 17:1189-1199.
    Kaether C, Skehel P, Dotti CG (2000) Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Molecular biology of the cell 11:1213-1224.
    Kalil K, Szebenyi G, Dent EW (2000) Common mechanisms underlying growth cone guidance and axon branching. Journal of neurobiology 44:145-158.
    Kapitein LC, Hoogenraad CC (2015) Building the Neuronal Microtubule Cytoskeleton. Neuron 87:492-506.
    Kevenaar JT, Hoogenraad CC (2015) The axonal cytoskeleton: from organization to function. Frontiers in molecular neuroscience 8:44.
    Kos A, Klein-Gunnewiek T, Meinhardt J, Loohuis NF, van Bokhoven H, Kaplan BB, Martens GJ, Kolk SM, Aschrafi A (2016) MicroRNA-338 Attenuates Cortical Neuronal Outgrowth by Modulating the Expression of Axon Guidance Genes. Molecular neurobiology 10.1007/s12035-016-9925-z.
    Lamberts JT, Hildebrandt EN, Brundin P (2015) Spreading of alpha-synuclein in the face of axonal transport deficits in Parkinson's disease: A speculative synthesis. Neurobiology of disease 77:276-283.
    Lee AC, Suter DM (2008) Quantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance. Developmental neurobiology 68:1363-1377.
    Lee SJ, Seo JW, Chae YS, Kim JG, Kang BW, Kim WW, Jung JH, Park HY, Jeong JY, Park JY (2014) Genetic polymorphism of miR-196a as a prognostic biomarker for early breast cancer. Anticancer research 34:2943-2949.
    Lee YS, Kim H, Kim HW, Lee JC, Paik KH, Kang J, Kim J, Yoon YS, Han HS, Sohn I, Cho J, Hwang JH (2015) High Expression of MicroRNA-196a Indicates Poor Prognosis in Resected Pancreatic Neuroendocrine Tumor. Medicine 94:e2224.
    Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protocols 8:2531-2537.
    Lei W, Omotade OF, Myers KR, Zheng JQ (2016) Actin cytoskeleton in dendritic spine development and plasticity. Current opinion in neurobiology 39:86-92.
    Li SC, Shi H, Khan M, Caplin M, Meyer T, Oberg K, Giandomenico V (2015) Roles of miR-196a on gene regulation of neuroendocrine tumor cells. Molecular and cellular endocrinology 412:131-139.
    Li Y, Jin L, Chen D, Liu J, Su Z, Yang S, Gui Y, Mao X, Nie G, Lai Y (2016) Tumor suppressive miR-196a is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Molecular medicine reports 14:560-566.
    Liu J, Githinji J, McLaughlin B, Wilczek K, Nolta J (2012a) Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem cell reviews 8:1129-1137.
    Liu P, Xin F, Ma CF (2015) Clinical significance of serum miR-196a in cervical intraepithelial neoplasia and cervical cancer. Genetics and molecular research : GMR 14:17995-18002.
    Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012b) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381-385.
    Lowery LA, Van Vactor D (2009) The trip of the tip: understanding the growth cone machinery. Nature reviews Molecular cell biology 10:332-343.
    Lynch MA (2004) Long-Term Potentiation and Memory. Physiological Reviews 84:87-136.
    MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal "time cells" bridge the gap in memory for discontiguous events. Neuron 71:737-749.
    Maday S (2016) Mechanisms of neuronal homeostasis: Autophagy in the axon. Brain research 10.1016/j.brainres.2016.03.047.
    Mandelkow E, Mandelkow EM (1995) Microtubules and microtubule-associated proteins. Current opinion in cell biology 7:72-81.
    Manzini MC, Xiong L, Shaheen R, Tambunan DE, Di Costanzo S, Mitisalis V, Tischfield DJ, Cinquino A, Ghaziuddin M, Christian M, Jiang Q, Laurent S, Nanjiani ZA, Rasheed S, Hill RS, Lizarraga SB, Gleason D, Sabbagh D, Salih MA, Alkuraya FS, Walsh CA (2014) CC2D1A regulates human intellectual and social function as well as NF-kappaB signaling homeostasis. Cell reports 8:647-655.
    Meiri KF, Saffell JL, Walsh FS, Doherty P (1998) Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones. The Journal of neuroscience : the official journal of the Society for Neuroscience 18:10429-10437.
    Meyer I, Kunert S, Schwiebert S, Hagedorn I, Italiano JE, Jr., Dutting S, Nieswandt B, Bachmann S, Schulze H (2012) Altered microtubule equilibrium and impaired thrombus stability in mice lacking RanBP10. Blood 120:3594-3602.
    Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nature reviews Neuroscience 14:161-176.
    Missaire M, Hindges R (2015) The role of cell adhesion molecules in visual circuit formation: from neurite outgrowth to maps and synaptic specificity. Developmental neurobiology 75:569-583.
    Miyazaki Y, Adachi H, Katsuno M, Minamiyama M, Jiang YM, Huang Z, Doi H, Matsumoto S, Kondo N, Iida M, Tohnai G, Tanaka F, Muramatsu S, Sobue G (2012) Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nature medicine 18:1136-1141.
    Nekrasov ED, Vigont VA, Klyushnikov SA, Lebedeva OS, Vassina EM, Bogomazova AN, Chestkov IV, Semashko TA, Kiseleva E, Suldina LA, Bobrovsky PA, Zimina OA, Ryazantseva MA, Skopin AY, Illarioshkin SN, Kaznacheyeva EV, Lagarkova MA, Kiselev SL (2016) Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons. Molecular neurodegeneration 11:27.
    Newpher TM, Ehlers MD (2009) Spine microdomains for postsynaptic signaling and plasticity. Trends in cell biology 19:218-227.
    Nishiyama J, Yasuda R (2015) Biochemical Computation for Spine Structural Plasticity. Neuron 87:63-75.
    Oaks AW, Zamarbide M, Tambunan DE, Santini E, Di Costanzo S, Pond HL, Johnson MW, Lin J, Gonzalez DM, Boehler JF, Wu GK, Klann E, Walsh CA, Manzini MC (2016) Cc2d1a Loss of Function Disrupts Functional and Morphological Development in Forebrain Neurons Leading to Cognitive and Social Deficits. Cerebral cortex 10.1093/cercor/bhw009.
    Olde Loohuis NF, Kos A, Martens GJ, Van Bokhoven H, Nadif Kasri N, Aschrafi A (2012) MicroRNA networks direct neuronal development and plasticity. Cellular and molecular life sciences : CMLS 69:89-102.
    Pascual-Leone A, Freitas C, Oberman L, Horvath JC, Halko M, Eldaief M, Bashir S, Vernet M, Shafi M, Westover B, Vahabzadeh-Hagh AM, Rotenberg A (2011) Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain topography 24:302-315.
    Penagos-Corzo JC, Bonilla A, Rodriguez-Moreno A, Flores G, Negrete-Diaz JV (2015) Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats. Synapse 69:543-552.
    Penke Z, Morice E, Veyrac A, Gros A, Chagneau C, LeBlanc P, Samson N, Baumgartel K, Mansuy IM, Davis S, Laroche S (2014) Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory. Philosophical transactions of the Royal Society of London Series B, Biological sciences 369:20130159.
    Potter H (2015) Kinesin light chain-1 variant E disrupts axonal transport and Abeta generation in Alzheimer's disease (comment on DOI 10.1002/bies.201400131). BioEssays : news and reviews in molecular, cellular and developmental biology 37:118.
    Rani N, Nowakowski TJ, Zhou H, Godshalk SE, Lisi V, Kriegstein AR, Kosik KS (2016) A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA. Neuron 90:1174-1188.
    Reddy PH, Shirendeb UP (2012) Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochimica et biophysica acta 1822:101-110.
    Sabry JH, O'Connor TP, Evans L, Toroian-Raymond A, Kirschner M, Bentley D (1991) Microtubule behavior during guidance of pioneer neuron growth cones in situ. The Journal of cell biology 115:381-395.
    Sarrouilhe D, di Tommaso A, Metaye T, Ladeveze V (2006) Spinophilin: from partners to functions. Biochimie 88:1099-1113.
    Schaefer AW, Schoonderwoert VT, Ji L, Mederios N, Danuser G, Forscher P (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Developmental cell 15:146-162.
    Schlager MA, Hoogenraad CC (2009) Basic mechanisms for recognition and transport of synaptic cargos. Molecular brain 2:25.
    Schulze H, Dose M, Korpal M, Meyer I, Italiano JE, Jr., Shivdasani RA (2008) RanBP10 is a cytoplasmic guanine nucleotide exchange factor that modulates noncentrosomal microtubules. The Journal of biological chemistry 283:14109-14119.
    Siegrist SE, Doe CQ (2007) Microtubule-induced cortical cell polarity. Genes & development 21:483-496.
    Solis O, Limon DI, Flores-Hernandez J, Flores G (2007) Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson's disease. Synapse (New York, NY) 61:450-458.
    Stiess M, Bradke F (2011) Neuronal polarization: the cytoskeleton leads the way. Developmental neurobiology 71:430-444.
    Stiles TL, Kapiloff MS, Goldberg JL (2014) The role of soluble adenylyl cyclase in neurite outgrowth. Biochimica et biophysica acta 1842:2561-2568.
    Sun D, Leung CL, Liem RK (2001) Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. Journal of cell science 114:161-172.
    Suozzi KC, Wu X, Fuchs E (2012) Spectraplakins: master orchestrators of cytoskeletal dynamics. The Journal of cell biology 197:465-475.
    Suter DM, Errante LD, Belotserkovsky V, Forscher P (1998) The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. The Journal of cell biology 141:227-240.
    Takeda S, Yamazaki H, Seog DH, Kanai Y, Terada S, Hirokawa N (2000) Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. The Journal of cell biology 148:1255-1265.
    Thu DCV, Oorschot DE, Tippett LJ, Nana AL, Hogg VM, Synek BJ, Luthi-Carter R, Waldvogel HJ, Faull RLM (2010) Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain 133:1094-1110.
    Tian D, Diao M, Jiang Y, Sun L, Zhang Y, Chen Z, Huang S, Ou G (2015) Anillin Regulates Neuronal Migration and Neurite Growth by Linking RhoG to the Actin Cytoskeleton. Current biology : CB 25:1135-1145.
    Torres-Garcia ME, Solis O, Patricio A, Rodriguez-Moreno A, Camacho-Abrego I, Limon ID, Flores G (2012) Dendritic morphology changes in neurons from the prefrontal cortex, hippocampus and nucleus accumbens in rats after lesion of the thalamic reticular nucleus. Neuroscience 223:429-438.
    Vallee RB, Shpetner HS, Paschal BM (1989) The role of dynein in retrograde axonal transport. Trends in neurosciences 12:66-70.
    Villarroel-Campos D, Gastaldi L, Conde C, Caceres A, Gonzalez-Billault C (2014) Rab-mediated trafficking role in neurite formation. Journal of neurochemistry 129:240-248.
    Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ, Mucke L (2015) Tau reduction prevents Abeta-induced axonal transport deficits by blocking activation of GSK3beta. The Journal of cell biology 209:419-433.
    Votin V, Nelson WJ, Barth AI (2005) Neurite outgrowth involves adenomatous polyposis coli protein and beta-catenin. Journal of cell science 118:5699-5708.
    Weiss KR, Littleton JT (2016) Characterization of axonal transport defects in Drosophila huntingtin mutants. Journal of neurogenetics 1-30.
    Wickstead B, Gull K (2011) The evolution of the cytoskeleton. The Journal of cell biology 194:513-525.
    Wilson SM, Moutal A, Melemedjian OK, Wang Y, Ju W, Francois-Moutal L, Khanna M, Khanna R (2014) The functionalized amino acid (S)-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth. Frontiers in Cellular Neuroscience 10.3389/fncel.2014.00196.
    Witte H, Bradke F (2008) The role of the cytoskeleton during neuronal polarization. Current opinion in neurobiology 18:479-487.
    Witte H, Neukirchen D, Bradke F (2008) Microtubule stabilization specifies initial neuronal polarization. The Journal of cell biology 180:619-632.
    Woo JA, Boggess T, Uhlar C, Wang X, Khan H, Cappos G, Joly-Amado A, De Narvaez E, Majid S, Minamide LS, Bamburg JR, Morgan D, Weeber E, Kang DE (2015) RanBP9 at the intersection between cofilin and Abeta pathologies: rescue of neurodegenerative changes by RanBP9 reduction. Cell death & disease 6:1676.
    Ye Y, Xu H, Su X, He X (2016) Role of MicroRNA in Governing Synaptic Plasticity. Neural plasticity 2016:4959523.
    Zhang C, Rasband MN (2016) Cytoskeletal control of axon domain assembly and function. Current opinion in neurobiology 39:116-121.
    Zheng D, Sabbagh JJ, Blair LJ, Darling AL, Wen X, Dickey CA (2016) MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein,

    下載圖示 校內:2021-08-10公開
    校外:2021-08-10公開
    QR CODE