| 研究生: |
黃瀚緯 Huang, Han-Wei |
|---|---|
| 論文名稱: |
以區塊鏈技術實作動態頻譜管理及接取平台 Implementation of Blockchain-Based Dynamic Spectrum Management and Access Platform |
| 指導教授: |
陳文字
Chen, Wen-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 動態頻譜接取系統 、區塊鏈 、感知無線電 、軟體定義無線電 、GNU Radio 、USRP 、頻譜資源資料庫 、頻譜交易 |
| 外文關鍵詞: | Dynamic Spectrum Access, Software-Defined Radio, GNU Radio, Cognitive Radio, Blockchain, Database, Spectrum Transaction |
| 相關次數: | 點閱:111 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資通訊產業的日趨進步與快速發展,越來越多裝置設備都有連接上網路的需求,因此對於頻譜資源的需求有增無減,然而頻譜資源是有限的,要如何有效利用目前就已經十分壅塞的頻譜資源,是不論電信業者、政府機關、資通訊產業業者都面臨到的難題。為了能夠讓頻譜資源的使用更加有效率、頻譜資源更易管理,本研究利用擁有環境偵測能力的感知無線電 CR (cognitive radio) 技術,在軟體定義無線電平台GNU Radio下進行開發,實作一個動態頻譜接取系統,並建立一個符合IEEE國際標準之動態頻譜接取系統,同時也將區塊鏈技術融合至動態頻譜接取平台中的頻譜交易機制當中。本篇研究以感知無線電裝置結合軟體定義無線電技術,並將裝置連接上建立在樹莓派 (Raspberry Pi3) 之動態頻譜接取資料庫,讓感知無線電裝置能夠在發射資料前先藉由自身環境感測能力偵測周遭頻譜使用狀況,透過軟體定義無線電設備USRP (universal software radio peripheral),並調整自身發射的參數,連接資料庫後由資料庫進行最終的干擾判斷進而同意裝置之發射請求。本研究同時在動態頻譜接取系統中實作頻譜交易的功能,並將能夠確保交易安全的區塊鏈技術融入頻譜交易當中,利用區塊鏈分散式帳本的架構驗證交易的安全性,讓整個動態頻譜接取系統更加完善且安全,以符合未來頻譜資源使用的需求。
With the rapid development of the information communication technology, more and more devices have their demands on the spectrum resource to access the internet service. However, spectrum resource is limited. It’s a big challenge for mobile operator, manufacture, and government to make spectrum usage more efficient. In order to manage the spectrum resource efficiently, this study aims to build a dynamic spectrum management and access platform according to the IEEE 1900 standards. Also, this study includes spectrum transaction which is implemented with blockchain technology into the spectrum management platform. Raspberry Pi 3 Model B equipped with USRP (universal software radio peripheral) is used in this study as a CR (cognitive radio) device. In dynamic spectrum access scheme, a CR device would sense the radio environment before transmitting data in order to avoid possible interference. If the device concludes that other devices nearby are using the certain spectrum resource, the device itself will dynamically adjust its key parameters such as carry frequency and modulation scheme. Spectrum management database plays another significant row in this study. When the database receives a transmitting request from CR device, it must determine whether interference happens. To make the spectrum transaction system safe and sound, blockchain technology is employed in this study. Blochchain is resistant to modification of each transaction record, so it can assure the safety of whole system without any malicious attack and simultaneously verify every transaction in the dynamic spectrum management and access platform.
[1] 國家通訊傳播委員會,“頻率資料庫查詢系統,” [Online]. Available: https://freqdbo.ncc.gov.tw/portal/index.aspx.
[2] J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: Making software radios more personal”, IEEE Personal Communications, vol. 6, pp. 13-18, 1999.
[3] J. Mitola III, “Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio”, Ph. D. diss., Royal Institute of Technology, Sweden, 8 May 2000.
[4] ITU, “Definitions of Software Defined Radio (SDR) and Cognitive Radio System (CRS),” Report ITU-R SM.2152, 2009.
[5] J. Mitola, “Software radio architecture,” IEEE Communications Magazine, vol. 33, no. 5, pp. 26-38, May 1995.
[6] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” Theory and Application of Cryptography, pp. 437-455, 1990.
[7] E. Hossain D. Niyato Z. Han Dynamic Spectrum Access and Management in Cognitive Radio Networks Cambridge Univ. Press 2009.
[8] M. Song C. Xin Y. Zhao X. Cheng "Dynamic spectrum access: From cognitive radio to network radio" IEEE Wireless Commun. vol. 19 no. 1 pp. 23-29 2012.
[9] M. Sherman A. N. Mody R. Martinez C. Rodriguez R. Reddy "IEEE standards supporting cognitive radio and networks dynamic spectrum access and coexistence" IEEE Commun. Mag. vol. 46 no. 7 pp. 72-79 Jul. 2008.
[10] I. F. Akyildiz W.-Y. Lee M. C. Vuran S. Mohanty "A survey on spectrum management in cognitive radio networks" IEEE Commun. Mag. vol. 46 nNakao. 4 pp. 40-48 Apr. 2008.
[11] A. B. Flores R. Guerra E. W. Knightly P. Ecclesine S. Pandey "IEEE 802.11af: A standard for TV white space spectrum sharing" IEEE Commun. Mag. vol. 51 no. 10 pp. 92-100 Oct. 2013.
[12] D. Gurney "Geo-Location Database Techniques for Incumbent Protection in TV White Space" 3rd IEEE lnt'l. Symp. New Frontiers in Dynamic Spectrum Access Networks pp. 1-9 2008-Oct.
[13] S. Nakamoto. (2008, Oct.). Bitcoin: A peer-to-peer electronic cash system. [Online]. Available: http://www.en.bitcoinr.cz/includes/ img/bitcoin.pdf
[14] J.J. Sikorski, J. Haughton, M. Kraft "Blockchain technology in the chemical industry: machine-to-machine electricity market" Appl Energy, 195 (2017), pp. 234-246
[15] K. Christidis M. Devetsikiotis "Blockchains and Smart Contracts for the Internet of Things" IEEE Access pp. 2292-2303 May 2016.
[16] K. Kotobi and S. G. Bilén, “Blockchain-enabled spectrum access in cognitive radio networks,” in Proc. Wireless Telecommunications Symp. (WTS), 2017, pp. 1–6.
[17] GNU Radio, “GNU Radio,” [Online]. Available: http://gnuradio.org/redmine/projects/show/gnuradio.
[18] Ettus Research, “USRP B200mini,” [Online]. Available: https://www.ettus.com/product/details/USRP-B200mini.