簡易檢索 / 詳目顯示

研究生: 尹睿婕
Yin, Jui-Chieh
論文名稱: 困難梭狀桿菌分選酶之結晶結構及功能分析
Crystal structure and functional analysis of the Clostridium difficile sortase
指導教授: 王淑鶯
Wang, Shu-Ying
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 72
中文關鍵詞: 困難梭狀桿菌SrtB晶體結構薑黃素AAEK1螢光共振能量轉移
外文關鍵詞: Clostridium difficile, sortase B, crystal structure, curcumin, AAEK1, FRET
相關次數: 點閱:144下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 困難梭狀桿菌(Clostridium difficile)為革蘭氏陽性、產孢子之厭氧桿菌且為具有多重抗藥性之人類致病菌。其主要發生於醫院及照護中心中使用抗生素治療、免疫力低下的病人。由於抗生素治療會破壞宿主腸道內正常菌叢,使得困難梭狀桿菌得以增生並分泌毒素。近年來,因抗生素使用型態的改變,導致抗藥性及高致病性菌株的出現,又目前尚未有適當治療方式避免疾病復發,因此其重要性與日俱增。若細菌欲感染宿主,首先細菌須定殖於宿主細胞表面,由於細菌表面具有許多附著分子及毒力因子會與宿主細胞產生交互作用,進而附著及入侵細胞,最終感染宿主導致疾病的產生。而這些附著因子及毒力因子可藉由分選酶(Sortase B)將其錨定於細菌細胞壁上,因此SrtB為一與致病相關之重要因子。本篇研究著重於探討源自困難梭狀桿菌的SrtB的結晶結構,同時藉由尋找合適的分選酶抑制劑,欲透過已知抑制劑結構加上SrtB的結構進一步設計新的藥物來治療疾病。在本篇研究中,藉基因重組的方法將困難梭狀桿菌的SrtB基因表現於大腸桿菌中,並藉親和性膠體層析法純化重組蛋白。SrtB蛋白質晶體結構顯示,SrtB包含三個α-螺旋體(α-helix)、兩個310-螺旋體(310-helix)及八個β-鏈(β-strand)且以單體的形式存在於溶液中。我們進一步將困難梭狀桿菌的SrtB的結晶結構與炭疽桿菌、金黃葡萄球菌及化膿性鏈球菌之SrtB相互比較,雖整體結構是相似的,但與酵素作用相關之Cys-His-Asp催化環(Cys-His-Asp triad)在結構型態上有所不同。此外,我們也成功獲得SrtB deltaN26,C209A-PPKTG的複合物晶體。目前尚未有SrtB與其受質之作用機制被發表,因此若能得知複合物晶體的結構將有利於探討酵素與其受質間之交互作用。此外,螢光共振能量轉移(FRET)結果顯示,薑黃素與AAEK1能有效抑制困難梭狀桿菌的SrtB的活性。綜合而論,我們解出困難梭狀桿菌的SrtB的晶體結構且找到薑黃素及AAEK1為有效之SrtB抑制劑。後續我們將優化長晶條件並透過SrtB deltaN26,C209A-PPKTG的複合物晶體結構,進一步在分子層級研究困難梭狀桿菌SrtB作用分子機轉,此外,我們希望能以結構為基礎設計SrtB抑制劑,其不僅能抑制SrtB的活性還能降低細菌產生抗藥性的機率,此將有利於治療困難梭狀桿菌感染之患者。

    Clostridium difficile (C. difficile) is a Gram-positive, spore-forming, and multidrug-resistant bacterial pathogen. C. difficile infection mostly occurs in hospitalized patients treated with antibiotic therapies. Antibiotic treatments damage host beneficial bacteria allowed C. difficile has chance to proliferate and exotoxin secretion result in Clostridium difficile-associated disease (CDAD). Recently, increasing numbers of drug-resistant and highly pathogenic strains of C. difficile were found due to the administration of broad-spectrum antibiotics. Therefore, there is an urgent need to develop new targets to control the diseases. Cell surface proteins, which play many important roles in pathogenesis are the potential targets. However, those surface proteins were anchored to the cell surface by sortase, a cysteine protease, mainly exists in Gram-positive bacteria and mediates surface proteins forming covalent bond with bacterial cell wall via a transpeptidation reaction. Thus, sortases can be considered as a promising target for the development of inhibitory molecules to block the surface proteins display in cell wall. In this study, I have successfully determined the crystal structure of an anchored protein, sortase B, from C. difficile and aim to use the crystal structure of sortase for future structure-based drug design against CDAD through inhibition the protease activity of SrtB. Recombinant C. difficile SrtB deltaN26 protein was successfully expressed in Escherichia coli and purified by Ni2+-NTA affinity chromatography. C. difficile SrtB deltaN26 is characterized to form monomer in solution. The crystal structure of SrtB deltaN26 was solved to 2.8 Å and consisted of three α-helices, two 310-helices and eight β-strands. The overall structure of C. difficile SrtB deltaN26 is similar to these of B. anthracis, S. aureus, and S. pyogenes. However, the orientations and distances between catalytic residues of Cys-His-Asp catalytic triad are different, suggesting the binding-specificity of SrtB in C. difficile. Due to scarcity of crystal structure of sortase-substrate complex in the present literature, the molecular mechanism of how sortase anchoring the surface protein to cell wall remains to be explored. Therefore, I have crystallized SrtB deltaN26,C209A-PPKTG complex for future structural determination. Furthermore, I discovered that curcumin and AAEK1 were effective inhibitors of C. difficile SrtB deltaN26 by fluorescence resonance energy transfer (FRET)-based assay. In summary, results from my thesis studies have provided the atomic resolution of C. difficile SrtB, identified the effective inhibitors and crystallized SrtB deltaN26,C209A-PPKTG complex. My studies have contributed to the framework toward understanding the mode of actions of sortase in Gram-positive bacteria and as a first step for the development of marketable new drug against CDAD.

    CONTENTS 中文摘要 I ABSTRACT III 誌謝 V TABLE LIST VIII FIGURE LIST IX ABBREVIATION X CHAPTER 1 INTRODUCTION 1 1.1 Clostridium difficile 1 1.1.1 Pathogenesis of Clostridium difficile 2 1.1.2 Virulence factors of Clostridium difficile 2 1.1.3 Surface proteins of Clostridium difficile 3 1.2 Clostridium difficile-associated disease (CDAD) 4 1.2.1 Treatment 4 1.2.2 Antibiotics resistance 5 1.2.3 CDI recurrence 6 1.3 Sortase 6 1.3.1 Classification of sortase 7 1.3.2 Structure of sortase B 8 1.3.3 Catalytic mechanism between different cysteine protease 9 1.3.4 Inhibitors 10 1.3.5 Substrates of C. difficile SrtB 11 1.4 Rationale and Specific Aims 12 CHAPTER 2 EXPERIMENTAL PROCEDURES 14 2.1 Materials 14 2.1.1 Bacterial strains 14 2.1.2 Plasmids 14 2.1.3 Chemicals and other materials 15 2.2 Methods 19 2.2.1 Overexpression of SrtB deltaN26 and SrtB deltaN26,C209A mutant in E. coli and preparation of crude extracts 19 2.2.2 Transformation of Se-Met SrtB deltaN26 plasmids 20 2.2.3 Overexpression of Se-Met SrtB deltaN26 in E. coli and preparation of crude extracts 20 2.2.4 Purification of SrtB deltaN26 and SrtB deltaN26,C209A mutant and Se-Met SrtB deltaN26 21 2.2.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 22 2.2.6 Size-exclusion chromatography 22 2.2.7 Protein crystallization 24 2.2.8 Fluorescence resonance energy transfer (FRET) assay 28 CHAPTER 3 RESULTS 30 3.1 Overexpression, purification and characterization of C. difficile sortase B, sortase B mutant and Se-Met sortase B 30 3.2 Crystallographic data and structure determination 31 3.3 Overall structure of C. difficile SrtB deltaN26 32 3.4 Structure of active residues of sortase B proteins contain a Cys-His-Asp catalytic triad 33 3.5 Structure of conserved arginine of sortase B proteins 34 3.6 Crystals of C. difficile SrtB deltaN26,C209A protein-PPKTG complex 34 3.7 Inhibitors screening by FRET-based assay 35 CHAPTER 4 DISCUSSION 37 CHAPTER 5 CONCLUSION 43 REFERENCES 44 TABLE 54 FIGURES 55 APPENDIX 70

    REFERENCES
    1 Leffler, D. A. & Lamont, J. T. Clostridium difficile infection. N Engl J Med 372, 1539-1548 (2015).
    2 Paredes-Sabja, D., Shen, A. & Sorg, J. A. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 22, 406-416 (2014).
    3 Fekety, R. et al. Epidemiology of antibiotic-associated colitis; isolation of Clostridium difficile from the hospital environment. Am J Med 70, 906-908 (1981).
    4 Fordtran, J. S. Colitis due to Clostridium difficile toxins: underdiagnosed, highly virulent, and nosocomial. Proc 19, 3-12 (2006).
    5 Owens, R. C. Clostridium difficile-associated disease: an emerging threat to patient safety: insights from the society of infectious diseases pharmacists. Pharmacotherapy 26, 299-311 (2006).
    6 Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38, 779-786 (2006).
    7 Wust, J., Sullivan, N. M., Hardegger, U. & Wilkins, T. D. Investigation of an outbreak of antibiotic-associated colitis by various typing methods. J Clin Microbiol 16, 1096-1101 (1982).
    8 Voth, D. E. & Ballard, J. D. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18, 247-263 (2005).
    9 van Eijk, E. et al. Complete genome sequence of the Clostridium difficile laboratory strain 630Deltaerm reveals differences from strain 630, including translocation of the mobile element CTn5. BMC Genomics 16, 31 (2015).
    10 Goudarzi, M., Seyedjavadi, S. S., Goudarzi, H., Mehdizadeh Aghdam, E. & Nazeri, S. Clostridium difficile infection: epidemiology, pathogenesis, risk factors, and therapeutic options. Scientifica 2014, 916826 (2014).
    11 Vaishnavi, C. Clinical spectrum & pathogenesis of Clostridium difficile associated diseases. Indian J Med Res 131, 487-499 (2010).
    12 Samore, M. H. et al. Wide diversity of Clostridium difficile types at a tertiary referral hospital. J Infect Dis 170, 615-621 (1994).
    13 Gerding, D. N., Muto, C. A. & Owens, R. C., Jr. Measures to control and prevent Clostridium difficile infection. Clin Infect Dis 46 Suppl 1, S43-49 (2008).
    14 Tedesco, F. J. Clindamycin-associated colitis. Review of the clinical spectrum of 47 cases. Am J Dig Dis 21, 26-32 (1976).
    15 Tonna, I. & Welsby, P. D. Pathogenesis and treatment of Clostridium difficile infection. Postgrad Med J 81, 367-369 (2005).
    16 Owens, R. C., Jr., Donskey, C. J., Gaynes, R. P., Loo, V. G. & Muto, C. A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis 46 Suppl 1, S19-31 (2008).
    17 Vedantam, G. et al. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 3, 121-134 (2012).
    18 Borriello, S. P., Davies, H. A., Kamiya, S., Reed, P. J. & Seddon, S. Virulence factors of Clostridium difficile. Rev Infect Dis 12 Suppl 2, S185-191 (1990).
    19 von Eichel-Streiber, C., Laufenberg-Feldmann, R., Sartingen, S., Schulze, J. & Sauerborn, M. Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 233, 260-268 (1992).
    20 Yeh, C. Y. et al. C-terminal repeats of Clostridium difficile toxin A induce production of chemokine and adhesion molecules in endothelial cells and promote migration of leukocytes. Infect Immun 76, 1170-1178 (2008).
    21 Hofmann, F., Busch, C., Prepens, U., Just, I. & Aktories, K. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272, 11074-11078 (1997).
    22 Faust, C., Ye, B. & Song, K. P. The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region. Biochem Biophys Res Commun 251, 100-105 (1998).
    23 Wren, B. W. A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5, 797-803 (1991).
    24 Soehn, F. et al. Genetic rearrangements in the pathogenicity locus of Clostridium difficile strain 8864--implications for transcription, expression and enzymatic activity of toxins A and B. Mol Gene Genet 258, 222-232 (1998).
    25 Davies, A. H., Roberts, A. K., Shone, C. C. & Acharya, K. R. Super toxins from a super bug: structure and function of Clostridium difficile toxins. Biochem J 436, 517-526 (2011).
    26 Ng, J. et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139, 542-552, 552 e541-543 (2010).
    27 Goncalves, C., Decre, D., Barbut, F., Burghoffer, B. & Petit, J. C. Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile. J Clin Microbiol 42, 1933-1939 (2004).
    28 Schwan, C. et al. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5, e1000626 (2009).
    29 Pechine, S., Janoir, C. & Collignon, A. Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. J Clin Microbiol 43, 5018-5025 (2005).
    30 Tasteyre, A. et al. Molecular characterization of fliD gene encoding flagellar cap and its expression among Clostridium difficile isolates from different serogroups. J Clin Microbiol 39, 1178-1183 (2001).
    31 Savariau-Lacomme, M. P., Lebarbier, C., Karjalainen, T., Collignon, A. & Janoir, C. Transcription and analysis of polymorphism in a cluster of genes encoding surface-associated proteins of Clostridium difficile. J Bacteriol 185, 4461-4470 (2003).
    32 Hennequin, C., Janoir, C., Barc, M. C., Collignon, A. & Karjalainen, T. Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiology 149, 2779-2787 (2003).
    33 Merrigan, M. M. et al. Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PloS One 8, e78404 (2013).
    34 Sara, M. & Sleytr, U. B. S-Layer proteins. J Bacteriol 182, 859-868 (2000).
    35 Kelly, C. P. & LaMont, J. T. Clostridium difficile--more difficult than ever. N Engl J Med 359, 1932-1940 (2008).
    36 Bagdasarian, N., Rao, K. & Malani, P. N. Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA 313, 398-408 (2015).
    37 Simor, A. E. et al. Clostridium difficile in long-term-care facilities for the elderly. Infect Control Hosp Epidemiol 23, 696-703 (2002).
    38 Ananthakrishnan, A. N. Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol 8, 17-26 (2011).
    39 Kim, J. et al. Epidemiological features of Clostridium difficile-associated disease among inpatients at children's hospitals in the United States, 2001-2006. Pediatrics 122, 1266-1270 (2008).
    40 Chitnis, A. S. et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med 173, 1359-1367 (2013).
    41 Freeman, J. et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 23, 529-549 (2010).
    42 Khanna, S. & Pardi, D. S. Clostridium difficile infection: management strategies for a difficult disease. Therap Adv Gastroenterol 7, 72-86 (2014).
    43 Henrich, T. J., Krakower, D., Bitton, A. & Yokoe, D. S. Clinical risk factors for severe Clostridium difficile-associated disease. Emerg Infect Dis 15, 415-422 (2009).
    44 Bien, J., Palagani, V. & Bozko, P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therap Adv Gastroenterol 6, 53-68 (2013).
    45 Debast, S. B., Bauer, M. P., Kuijper, E. J., European Society of Clinical, M. & Infectious, D. European society of clinical microbiology and infectious diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 20 Suppl 2, 1-26 (2014).
    46 Leffler, D. A. & Lamont, J. T. Treatment of Clostridium difficile-associated disease. Gastroenterology 136, 1899-1912 (2009).
    47 Surawicz, C. M. et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108, 478-498; quiz 499 (2013).
    48 Cohen, S. H. et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31, 431-455 (2010).
    49 Shen, E. P. & Surawicz, C. M. Current treatment options for severe Clostridium difficile-associated disease. Gastroenterol Hepatol 4, 134-139 (2008).
    50 McDonald, L. C. et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353, 2433-2441 (2005).
    51 Sunenshine, R. H. & McDonald, L. C. Clostridium difficile-associated disease: new challenges from an established pathogen. Cleve Clinic J Med 73, 187-197 (2006).
    52 Figueroa, I. et al. Relapse versus reinfection: recurrent Clostridium difficile infection following treatment with fidaxomicin or vancomycin. Clin Infect Dis 55 Suppl 2, S104-109 (2012).
    53 Rohlke, F. & Stollman, N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap Adv Gastroenterol 5, 403-420 (2012).
    54 Duke, P. S. & Fardy, J. Recurrent Clostridium difficile infection treated with home fecal transplantation: a case report. J Med Case Rep 8, 393 (2014).
    55 Dodin, M. & Katz, D. E. Faecal microbiota transplantation for Clostridium difficile infection. Int J Clin Pract 68, 363-368 (2014).
    56 Hickson, M. Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection. Therap Adv Gastroenterol 4, 185-197 (2011).
    57 Goldenberg, J. Z. et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 5, CD006095 (2013).
    58 Tung, J. M., Dolovich, L. R. & Lee, C. H. Prevention of Clostridium difficile infection with Saccharomyces boulardii: a systematic review. Can J Gastroenterol 23, 817-821 (2009).
    59 Hu, M. Y. et al. Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology 136, 1206-1214 (2009).
    60 Mullane, K. M. et al. Efficacy of fidaxomicin versus vancomycin as therapy for Clostridium difficile infection in individuals taking concomitant antibiotics for other concurrent infections. Clin Infect Dis 53, 440-447 (2011).
    61 Musher, D. M. et al. Relatively poor outcome after treatment of Clostridium difficile colitis with metronidazole. Clin Infect Dis 40, 1586-1590 (2005).
    62 Pepin, J. et al. Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada. Clin Infect Dis 40, 1591-1597 (2005).
    63 Aslam, S., Hamill, R. J. & Musher, D. M. Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet Infect Dis 5, 549-557 (2005).
    64 Hu, M. Y. et al. A prospective study of risk factors and historical trends in metronidazole failure for Clostridium difficile infection. Clin Gastroenterol Hepatol 6, 1354-1360 (2008).
    65 Zar, F. A., Bakkanagari, S. R., Moorthi, K. M. & Davis, M. B. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 45, 302-307 (2007).
    66 Wenisch, C., Parschalk, B., Hasenhundl, M., Hirschl, A. M. & Graninger, W. Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis 22, 813-818 (1996).
    67 Hedge, D. D., Strain, J. D., Heins, J. R. & Farver, D. K. New advances in the treatment of Clostridium difficile infection (CDI). Ther Clin Risk Manag 4, 949-964 (2008).
    68 Walters, B. A., Roberts, R., Stafford, R. & Seneviratne, E. Relapse of antibiotic associated colitis: endogenous persistence of Clostridium difficile during vancomycin therapy. Gut 24, 206-212 (1983).
    69 Wilcox, M. H., Fawley, W. N., Settle, C. D. & Davidson, A. Recurrence of symptoms in Clostridium difficile infection--relapse or reinfection? J Hosp Infect 38, 93-100 (1998).
    70 Tedesco, F. J., Gordon, D. & Fortson, W. C. Approach to patients with multiple relapses of antibiotic-associated pseudomembranous colitis. Am J Gastroenterol 80, 867-868 (1985).
    71 Bartlett, J. G., Tedesco, F. J., Shull, S., Lowe, B. & Chang, T. Symptomatic relapse after oral vancomycin therapy of antibiotic-associated pseudomembranous colitis. Gastroenterology 78, 431-434 (1980).
    72 Mazmanian, S. K., Liu, G., Ton-That, H. & Schneewind, O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760-763 (1999).
    73 Marraffini, L. A., Dedent, A. C. & Schneewind, O. Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiol Mol Biol Rev 70, 192-221 (2006).
    74 Ton-That, H., Mazmanian, S. K., Faull, K. F. & Schneewind, O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. J Biol Chem 275, 9876-9881 (2000).
    75 Ton-That, H., Marraffini, L. A. & Schneewind, O. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694, 269-278 (2004).
    76 Pallen, M. J., Lam, A. C., Antonio, M. & Dunbar, K. An embarrassment of sortases - a richness of substrates? Trends Microbiol 9, 97-102 (2001).
    77 Comfort, D. & Clubb, R. T. A comparative genome analysis identifies distinct sorting pathways in Gram-positive bacteria. Infect Immun 72, 2710-2722 (2004).
    78 Suree, N., Jung, M. E. & Clubb, R. T. Recent advances towards new anti-infective agents that inhibit cell surface protein anchoring in Staphylococcus aureus and other gram-positive pathogens. Mini Rev Med Chem 7, 991-1000 (2007).
    79 Maresso, A. W. & Schneewind, O. Sortase as a target of anti-infective therapy. Pharmacol Rev 60, 128-141 (2008).
    80 Mazmanian, S. K., Ton-That, H., Su, K. & Schneewind, O. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci U S A 99, 2293-2298 (2002).
    81 Mazmanian, S. K. et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299, 906-909 (2003).
    82 Maresso, A. W., Chapa, T. J. & Schneewind, O. Surface protein IsdC and sortase B are required for heme-iron scavenging of Bacillus anthracis. J Bacteriol 188, 8145-8152 (2006).
    83 Maresso, A. W. & Schneewind, O. Iron acquisition and transport in Staphylococcus aureus. Biometals 19, 193-203 (2006).
    84 Kang, H. J., Coulibaly, F., Proft, T. & Baker, E. N. Crystal structure of Spy0129, a Streptococcus pyogenes class B sortase involved in pilus assembly. PloS One 6, e15969 (2011).
    85 Jonsson, I. M., Mazmanian, S. K., Schneewind, O., Bremell, T. & Tarkowski, A. The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect 5, 775-780 (2003).
    86 Newton, S. M. et al. The svpA-srtB locus of Listeria monocytogenes: fur-mediated iron regulation and effect on virulence. Mol Microbiol 55, 927-940 (2005).
    87 Ton-That, H. & Schneewind, O. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50, 1429-1438 (2003).
    88 Guttilla, I. K. et al. Acyl enzyme intermediates in sortase-catalyzed pilus morphogenesis in Gram-positive bacteria. J Bacteriol 191, 5603-5612 (2009).
    89 Marraffini, L. A. & Schneewind, O. Targeting proteins to the cell wall of sporulating Bacillus anthracis. Mol Microbiol 62, 1402-1417 (2006).
    90 Claessen, D. et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17, 1714-1726 (2003).
    91 Capstick, D. S., Willey, J. M., Buttner, M. J. & Elliot, M. A. SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol Microbiol 64, 602-613 (2007).
    92 Zong, Y., Mazmanian, S. K., Schneewind, O. & Narayana, S. V. The structure of sortase B, a cysteine transpeptidase that tethers surface protein to the Staphylococcus aureus cell wall. Structure 12, 105-112 (2004).
    93 Zhang, R. et al. Structures of sortase B from Staphylococcus aureus and Bacillus anthracis reveal catalytic amino acid triad in the active site. Structure 12, 1147-1156 (2004).
    94 Jacobitz, A. W. et al. Structural and computational studies of the Staphylococcus aureus sortase B-substrate complex reveal a substrate-stabilized oxyanion hole. J Biol Chem 289, 8891-8902 (2014).
    95 Chambers, C. J., Roberts, A. K., Shone, C. C. & Acharya, K. R. Structure and function of a Clostridium difficile sortase enzyme. Sci Rep 5, 9449 (2015).
    96 Otto, H. H. & Schirmeister, T. Cysteine proteases and their inhibitors. Chem Rev 97, 133-172 (1997).
    97 Musil, D. et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10, 2321-2330 (1991).
    98 Lalmanach, G. et al. Conserved cystatin segments as models for designing specific substrates and inhibitors of cysteine proteinases. J Protein Chem 14, 645-653 (1995).
    99 Hasnain, S., Hirama, T., Huber, C. P., Mason, P. & Mort, J. S. Characterization of cathepsin B specificity by site-directed mutagenesis. Importance of Glu245 in the S2-P2 specificity for arginine and its role in transition state stabilization. J Biol Chem 268, 235-240 (1993).
    100 Bromme, D., Bonneau, P. R., Lachance, P. & Storer, A. C. Engineering the S2 subsite specificity of human cathepsin S to a cathepsin L- and cathepsin B-like specificity. J Biol Chem 269, 30238-30242 (1994).
    101 Cotrin, S. S. et al. Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides to define substrate specificity of carboxydipeptidases: assays with human cathepsin B. Anal Biochem 335, 244-252 (2004).
    102 Choe, Y. et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281, 12824-12832 (2006).
    103 Donahue, E. H. et al. Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors. BMC Microbiol 14, 219 (2014).
    104 Oh, K. B., Oh, M. N., Kim, J. G., Shin, D. S. & Shin, J. Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Appl Microbiol Biotechnol 70, 102-106 (2006).
    105 Liu, B. et al. Quercitrin, an inhibitor of Sortase A, interferes with the adhesion of Staphylococcal aureus. Molecules 20, 6533-6543 (2015).
    106 Wallock-Richards, D. J. et al. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem Commun 51, 10483-10485 (2015).
    107 Hu, P., Huang, P. & Chen, M. W. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch Oral Biol 58, 1343-1348 (2013).
    108 Maresso, A. W. et al. Activation of inhibitors by sortase triggers irreversible modification of the active site. J Biol Chem 282, 23129-23139 (2007).
    109 Oh, K. B. et al. Therapeutic effect of (Z)-3-(2,5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile (DMMA) against Staphylococcus aureus infection in a murine model. Biochem Biophys Res Commun 396, 440-444 (2010).
    110 Schneewind, O., Mihaylova-Petkov, D. & Model, P. Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J 12, 4803-4811 (1993).
    111 Janulczyk, R. & Rasmussen, M. Improved pattern for genome-based screening identifies novel cell wall-attached proteins in Gram-positive bacteria. Infect Immun 69, 4019-4026 (2001).
    112 Tulli, L. et al. CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen. Cell Microbiol 15, 1674-1687 (2013).
    113 Mariscotti, J. F., Garcia-del Portillo, F. & Pucciarelli, M. G. The Listeria monocytogenes sortase-B recognizes varied amino acids at position 2 of the sorting motif. J Biol Chem 284, 6140-6146 (2009).
    114 Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32, 259-286 (2008).
    115 Thammavongsa, V., Kern, J. W., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med 206, 2417-2427 (2009).
    116 Fan, J. et al. Ecto-5'-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PloS One 7, e38059 (2012).
    117 Ilari, A. & Savino, C. Protein structure determination by x-ray crystallography. Methods Mol Biol 452, 63-87 (2008).
    118 Stols, L. et al. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25, 8-15 (2002).
    119 Graslund, S. et al. The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 58, 210-221 (2008).
    120 Durbin, S. D. & Feher, G. Protein crystallization. Annu Rev Phys Chem 47, 171-204 (1996).
    121 Minor, Z. O. a. W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 (1997).
    122 Loll, E. E. L. P. J. Protein crystallography: a concise guide. (2008).
    123 Rossmann, M. G. The molecular replacement method. Acta Cryst 46 ( Pt 2), 73-82 (1990).
    124 McCoy, A. J. et al. Phaser crystallographic software. J Appl Cryst 40, 658-674 (2007).
    125 Collaborative Computational Project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-763 (1994).
    126 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 (2004).
    127 Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67, 355-367 (2011).
    128 Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-1954 (2002).
    129 Bornhorst, J. A. & Falke, J. J. Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326, 245-254 (2000).
    130 Rice, L. M., Earnest, T. N. & Brunger, A. T. Single-wavelength anomalous diffraction phasing revisited. Acta Crystallogr D Biol Crystallogr 56, 1413-1420 (2000).
    131 Shah, D. et al. Clostridium difficile infection: update on emerging antibiotic treatment options and antibiotic resistance. Expert Rev Anti Infect Ther 8, 555-564 (2010).
    132 Spirig, T., Weiner, E. M. & Clubb, R. T. Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82, 1044-1059 (2011).
    133 Zhang, J. et al. Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc Natl Acad Sci U S A 111, 13517-13522 (2014).
    134 Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D. & Hill, C. P. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 Å resolution. EMBO J 16, 3787-3796 (1997).
    135 Bentley, M. L., Gaweska, H., Kielec, J. M. & McCafferty, D. G. Engineering the substrate specificity of Staphylococcus aureus Sortase A. The beta6/beta7 loop from SrtB confers NPQTN recognition to SrtA. J Biol Chem 282, 6571-6581 (2007).

    無法下載圖示 校內:2020-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE