| 研究生: |
王璽翔 Wang, Si-Siang |
|---|---|
| 論文名稱: |
低成本方法製作奈米模板微影術所需之奈米尺度模板 Low-cost method to fabricate nanoscale stencil for Nano-Stencil Lithography |
| 指導教授: |
張允崇
Chang, Yun-Chorng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 奈米模板 、奈米模板微影術 、矽奈米線場效應電晶體 |
| 外文關鍵詞: | Nanostencil, Nanostencil Lithography, Silicon Nanowire Field-Effect Transistor |
| 相關次數: | 點閱:120 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文說明了奈米尺度模板的製作可以透過黃光微影術及矽濕式蝕刻的結合來完成。首先利用黃光微影在絕緣層上矽(SOI)基板定義出長度50微米、寬度約10微米的矩形方框圖形,並透過矽濕式蝕刻在元件層產生V型槽結構,接著在基板背面進行矽濕式深蝕刻以露出絕緣層。
在清除氧化層後製作出的模板上奈米線縫隙,寬度範圍在300到700奈米間,長度範圍則在37到57微米間,而我們能夠製作出的縫隙最小寬度約在180奈米左右,這些模板上縫隙將會用於奈米模板微影術上,此技術讓我們在不同基板和沉積物質的選擇上更為靈活,模板還可以在清洗後重複使用。
論文第二個部分,我們將示範如何透過奈米模板微影術完成矽奈米線場效應電晶體元件的製作,製程首先將第一部分完成的模板透過奈米模板微影術製作出鎳奈米線,奈米線平均長度和寬度分別在47微米及610奈米,我們透過黃光微影在每一條鎳奈米線的兩端點定義出鎳電極區,後續經過矽乾式蝕刻、鎳的移除來完成矽奈米線與電極區部分,其中矽奈米線最小寬度在240奈米左右,我們目前進行到矽奈米線場效應電晶體的電性量測。
Fabrication of nanoscale stencil has been demonstrated by combining regular ultraviolet (UV) photolithography and anisotropic wet silicon etch. First, we use photolithography process to define rectangular patterns, whose length is around 50 m and width around 10 m, on top of a silicon-on-insulator (SOI) wafer. Then anisotropic wet silicon etch produce a V-groove in the device Si layer. After this, we performed a deep silicon wet etch on the backside substrate to reveal the insulator layer. Line-shaped slits with width between 300 to 700 nm and length between 37 to 57m reveal after oxide etch. The minimum width of the slits can be as small as 180 nm. These slits are then used to be stencils for Nano-Stencil Lithography (NSL). Using NSL, we have more flexibility to choose various substrates and depositing materials. The stencils can also be cleaned and used repeatedly.
In the second part of this dissertation, we will demonstrate how to use NSL to fabricate silicon nanowire field-effect transistors (NW-FETs). First, nickel (Ni) nanowires are fabricated by NSL with stencils fabricated using the method proposed in the first part of the dissertation. The average length and width of the fabricated Ni wires are 47m and 610 nm, respectively. After Ni nanowires fabrication, we fabricate square Ni contact pads that connected to the two ends of each nanowire using UV photolithography. Silicon nanowire connected to two contact pads reveals after dry silicon etch and Ni removal processes. The linewidth of Silicon nanowire is as narrow as 240 nm. We are currently perform electrical measurement on these fabricated Silicon NW-FETs.
[1] G.M. Kim, M.A.F. van den Boogaart, J. Brugger, (2003), “F abrication and application of a full wafer size micro/nanostencil for multiple length-scale surface patterning,” Microelectronic Engineering, 67-68, pp.609-614.
[2] B. Viallet, J. Grisolia, L. Ressier, M.A.F. Van Den Boogaart, J. Brugger, T. Lebraud (2008), “Stencil-assisted reactive ion etching for micro and nano patterning,” Microelectronic Engineering , 85, pp.1705-1708.
[3] Niklas Elfstrom, Robert Juhasz, Ilya Sychugov, Torun Engfeldt, Amelie Eriksson Karlstrom, and Jan Linnros (2007), “Surface Charge Sensitivity of Silicon Nanowires: Size Dependence,” Nano Letters , 7(9) pp.2608.
[4] Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, and Charles M. Lieber (2003), “High Performance Silicon Nanowire Field Effect Transistors,” Nano Letters, 3, pp.149.
[5] Joseph Becker (2004), “Signal transduction inhibitors—a work in progress,” Nature Biotechnology, 22, pp.15-18.
[6] Gengfeng Zheng, Fernando Patolsky, Yi Cui, Wayne U Wang & Charles M Lieber (2005), “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nature Biotechnology, 23, pp.1294-1301.
[7] Serap Aksu, Ahmet A. Yanik, Ronen Adato, Alp Artar, Min Huang, and Hatice Altug (2010), “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Letters, 10, pp.2511–2518.
[8] O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. F. van den Boogaart, and J. Brugger (2008), “Metallic Nanowires by Full Wafer Stencil Lithography,” Nano Letters, 8(11) pp.3675-3682.
[9] O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger (2012), “High-Resolution Resistless Nanopatterning on Polymer and Flexible Substrates for Plasmonic Biosensing Using Stencil Masks,” ACS Nano, 6(6) pp.5474-5481.
[10] Thet Naing Tun , Ma Han Thu Lwin , Hui Hui Kim , N Chandrasekhar , and C Joachim (2007),“Wetting studies on Au nanowires deposited through nanostencil masks,”Nanotechnology, 18(33).
[11] O. Va´zquez-Mena, G. Villanueva, M.A.F. van den Boogaart, V. Savu, J. Brugger (2008),“Reusability of nanostencils for the patterning of Aluminum nanostructures by selective wet etching,”Microelectronic Engineering, 85, pp.1237–1240.
[12] Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber (2001), “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, 293(5533) pp.1289-1292.
[13] Kuan-I Chen, Bor-Ran Li, Yit-Tsong Chen (2011), “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today, 6, pp.131-154.
[14] Shu-Ping Lin, Tien-Yin Chi, Tung-Yen Lai and Mao-Chen Liu (2012), “Investigation into the Effect of Varied Functional Biointerfaces on Silicon Nanowire MOSFETs,” Sensors, 12(12) pp.16867-16878.
[15] J. Hahm and C. M. Lieber (2004), “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors,” Nano Letters, 4(1), pp.51–54.
[16] W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber (2005), “Label-free detection of small-molecule–protein interactions by using nanowire nanosensors,” PNAS, 102(9), pp.3208–3212.
[17] Fernando Patolsky, Gengfeng Zheng, Oliver Hayden, Melike Lakadamyali, Xiaowei Zhuang, and Charles M. Lieber (2004), “Electrical detection of single viruses,”Proceedings of the National Academy of Sciences of the United States of America, 101(39) pp.14017-14022.
[18] Guo-Jun Zhang, Min Joon Huang, Zhan Hong Henry Luo, Guang Kai Ignatius Tay, Eu-Jin Andy Lim, Edison T. Liu, Jane S. Thomsen (2010), “Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions,” Biosensors and Bioelectronics, 26, pp.365–370.
[19] S.-P. Lin, C.-Y. Pan, K.-C. Tseng, M.-C. Lin, C.-D. Chen, C.-C. Tsai, S.-H. Yu, Y.-C. Sun, T.-W. Lin, and Y.-T. Chen (2009) “A reversible surface functionalized nanowire transistor to study protein-protein interactions,” Nano Today, 4(3), pp.235–243.
[20] Fernando Patolsky, Gengfeng Zheng & Charles M Lieber (2006) “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nature Protocols, 1(4), pp. 1711–1724.