簡易檢索 / 詳目顯示

研究生: 戴明坤
Dai, Ming-Kun
論文名稱: 應用擴充頻道法於非定常環境振動之模態參數識別研究
Identification of Modal Parameters from Nonstationary Ambient Vibration Data Using the Channel-Expansion Technique
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 亞伯拉罕時域法非定常環境振動模態置信因子
外文關鍵詞: Modal Confidence Factor, Ibrahim Time Domain Technique, Nonstationary Ambient Vibration
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討在非定常環境振動下利用結構系統響應進行模態參數識
    別。以往亞伯拉罕時域法需基於自由衰減響應的限制下,方可識別出準確的模態參數,而本文提出利用延遲時間取樣擴充頻道法,直接利用非定常環境振動響應進行模態參數識別,可獲得良好之識別結果,並推廣至更廣泛的非定常環境振動響應。另外,引入模態置信因子來區分結構模態與非結構模態,最後利用數值模擬驗證本文所提出的理論。

    Identification of modal parameters is considered from response data of structural systems under nonstationary ambient vibration. In this thesis, the ability of the Ibrahim time domain identification method has been studied to identify desired structural modal parameters, using a large identification model of nonstationary-response by employing the technique of channel-expansion. The use of the expanded model satisfies the need to determine the exact number of modes excited, but gives rise to the problem of distinguishing the structural modes from the non-structural modes. The modal confidence factor could then be used to effectively sort out structural modes from the identified modes. Numerical simulations confirm the validity of the proposed method for identification of structural modal parameters from nonstationary ambient response data.

    目錄 中文摘要.................................. Ⅰ 英文摘要.................................. Ⅱ 致謝...................................... Ⅲ 目錄...................................... Ⅳ 表目錄.................................... Ⅴ 圖目錄.................................... Ⅷ 第一章 緒論............................... 1 1-1 引言............................... 1 1-2 系統識別與模態分析................. 2 1-3 文獻回顧........................... 4 1-4 研究目的及方法..................... 7 1-5 論文架構........................... 8 第二章 環境振動分析....................... 9 2-1 隨機過程簡介....................... 9 2-1-1 全態過程....................... 11 2-1-2 相關函數與功率頻譜密度函數..... 11 2-2 結構系統之自由振動分析............. 13 2-3 隨機外力過程的模擬................. 15 2-4 結構系統之隨機振動分析............. 19 第三章 時域法模態參數識別理論............. 23 3-1 引言............................... 23 3-2 亞伯拉罕時域法..................... 24 3-3 模態可信度......................... 37 第四章 數值模擬........................... 39 4-1 引言............................... 39 4-2 鏈模型系統之模態參數識別........... 39 4-3 具有相近模態之模態參數識別......... 48 第五章 結論............................... 51 參考文獻.................................. 55

    [1]Asmussen, J. C., Ibrahim, S. R. and R.Brincker, “Random Decrement and Regression Analysis of Bridges Traffic Responses”,
    Proceedings of the 14th International Modal Analysis Conference, Vol. 1, 1996, pp. 453-458.
    [2]Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentic-Hall, 1982, Chap. 9.
    [3]Beck, J. L. and Jennings, P. C., “Structural Identification Using Linear Models and Earthquake Records”, Earthquake Engineering and Structural Dynamics, Vol. 8, 1980, pp. 145-160.
    [4]Beck, J. L., “Determining Models of Structures from Earthquake Records”, Report No. EERL 78-01, California Institute of Technology, Pasadena, 1978.
    [5]Bendat, J.S. and Piersol, A.G., Random Data: Analysis and Measurement Procedures, John Wiley, New York, 2000.
    [6]Box, G.E.P. and Jenkins, G.M., Time series analysis: Forecasting and control, San Francisco: Holden Day, 1970.
    [7]Carne, T. G., Lauffer, J. P., Gomez, A. J. and Benjannet, H., “Modal Testing an Immense Flexible Structure Using Natural and Artificial Excitation”, The International Journal of Analytical and Experimental Modal Analysis, The Society of Experimental Mechanics, Oct. 1988, pp. 117-122.
    [8]Chiang, D. Y., and Lin, C. S., “Identification of Modal Parameters from Nonstationary Ambient Vibration Data Using Correlation Technique”, Journal of AIAA, Vol.46, No.11, Nov. 2008, pp. 2752-2759.
    [9]Code, H. A. Jr., “Methods and Apparatus for Measuring the Damping Characteristics of a Structures by the Random Decrement Technique ”, United States Patent No.3,620,069, 1971.
    [10]Ewins, D. J., Modal Testing: Theory and Practice, Research Studies Press, 1984.
    [11] Gao, Y. and Randall, R. B., “The ITD Mode-Shape Coherence and Confidence Factor and Its Application to Separating Eigenvalue Positions in the Z-Plane”, Mechanical Systems and Signal
    Processing, Vol.14, No.2, 2000, pp. 167-180.
    [12]H. Vold and G. F. Rocklin. “The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, International Modal Analysis Conference Proceedings, Nov. 1982.
    [13]Ibrahim, S. R., and Fullekrug, U., “Investigation into Exact Normalization of Incomplete Complex Modes by Decomposition Trasformation”, Proceedings of 8th International Modal Analysis Conference, Kissimmee, FL, 1990, pp. 205-212.
    [14]Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direct Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47, Part 4, Sept. 1977, pp. 183-198.
    [15]Ibrahim, S. R. and Mikulcik, E. C., “The Experimental Determination of Vibration Parameters from Time Responses”, Shock and Vibration Bulletin, Vol. 46, Part 5, Aug. 1976, pp. 183-198
    [16]Ibrahim, S. R. and Pappa, R. S., “Large Survey Testing Using the Ibrahim Time Domain (ITD) Model Identification Algorithm”, Journal of Spacecraft and Rockets, Vol. 19, Sept.-Oct. 1982, pp. 459-465.
    [17] Ibrahim, S. R., Brincker, R. and Asmussen, J. C., “Modal Parameter Identification from Responses of General Unknown Random Inputs”, Proceedings of the 14th International Modal Analysis Conference, Vol.1, 1996, pp. 446-452.
    [18]Ibrahim, S. R., “Computation of Normal Modes from Identified Complex Modes”, Journal of AIAA, Vol. 21, No. 3, 1983, pp. 446-451.
    [19]Ibrahim, S. R., “Modal Confidence Factor in Vibration Testing”, Journal of Spacecraft and Rockets, Vol.15, No.5, Oct. 1978, pp. 313-316.
    [20]Ibrahim, S. R., “Random Decrement Technique for Modal Identification of Structures”, Journal of Spacecraft and Rockets, Vol. 140, Nov. 1977, pp. 696-700.
    [21]James, G. H., Carne, T. G. and Lauffer, J. P., “The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Turbines”, SAND92-1666. UC-261, Sandia National Aboratories, 1993.
    [22]Juang, J. N. and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”, Journal of Guidance and Control Dynamics, AIAA, Vol. 8, No. 5, 1985, pp.620-627.
    [23]Juang, J. N., Cooper, J. E. and Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, 1988, pp. 5-14.
    [24]Kennedy, S. R. and Pancu, C. D. P. “Use of Vectors in Vibration Measurement and Analysis”, Journal of Aeronautics Sciences, Vol. 14, No. 11, 1974, pp. 603-625.
    [25]Kirshenboim, J., “Real vs. Complex Mode Shapes”, Proceeding of 5th International Modal Analysis Conference, London, England, 1987, pp. 1594-1599.
    [26]Newland, D.E., An Introduction to Random Vibrations and Spectral Analysis, 1975.
    [27]Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis, Part I: Theory”, Journal of Sound and Vibration, Vol. 122, No. 3, 1988, pp. 413-422.
    [28]Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis Via State Space”, Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp. 132-137.
    [29]Pandit, S. M. and Wu, S. M., Time Series and System Analysis with Applications, John Wiley & Sons, Inc., New York, 1983.
    [30]Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol. 51, Part 3, 1981, pp. 43-72.
    [31]Shinozuka, M. and Deodatis, G., “Simulation of Stochastic Processes by Spectral Representation”, Applied Mechanics Reviews, Vol. 44, No. 4, 1991, pp. 191-203.
    [32]Shinozuka, M. and Jan, C.-M., “Digital Simulation of Random Processes and Its Applications”, Journal of Sound and Vibration, Vol. 25, No. 1, 1972, pp. 111-128.
    [33]Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes”, Journal of the Acoustical Society of America, Vol. 49, No. 1, 1971, pp. 357-367.
    [34]Vandiver, J. K., Dunwoody, A. B., Campbell, R. B. and Cook, M. F., “A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique”, Journal of Mechanical Design, Vol. 104, April 1982, pp. 307-313.
    [35] Ward Heylen, Stefan Lammens and Paul Sas, Modal Analysis Theory and Testing, 2nd ed., Katholieke Universiteit Leuven, Faculty of Engineering, Dept. of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, 1998.
    [36]曹松華, 隨機遞減法於非定常環境振動模態參數識別之應用, 碩士論文, 國立成功大學航空太空工程研究所, 2004.

    下載圖示 校內:立即公開
    校外:2009-07-14公開
    QR CODE