| 研究生: |
楊安正 Yang, An-Cheng |
|---|---|
| 論文名稱: |
平行處理於分子動力學模擬效率增進之探討 A study on the efficiency improvement of molecular dynamics simulation with parallel computing technique |
| 指導教授: |
翁政義
Weng, Cheng-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 平行處理 、分子動力學 |
| 外文關鍵詞: | molecular dynamics, parallel computing |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是以平行處理技巧增大分子動力學模擬尺度以及提升模擬效率,使用以原子軌域線性結合法(LCAO, Linear Combination of Atomic Orbital),又稱為緊束法(Tight-Binding Method)的半經驗勢能函數,來進行無法以週期性邊界條件(Periodic Boundary Condition)達成的大尺度分子動力學模擬(Large Scale Molecular Dynamics Simulation)。
本文所採用的平行演算法有原子分散法(Atom-Decomposition Method)、空間分散法(Spatial-Decomposition Method)兩種,能成功將系統模擬粒子數由數萬顆增加到數百萬顆甚至千萬顆。我們會先展示使用平行運算法的模擬的可靠性,接著再橫向探討對固定大小的模擬系統,採用不同演算法所造成的效率差異,以及討論造成此現象的原因。同時也縱向對同一種演算法效率與參與模擬計算處理器數目的關係進行探討。最後提出平行分子動力學模擬的瓶頸與改進的方向。
This study is .focused on the efficiency improvement of molecular dynamics simulation and the simulation enlargement with parallel computing technique. Using semi-empirical potiential derived from LCAO(Linear Combination of Atomic Orbital) to accomplish the Large Scale Molecular Dynamics Simulation which can’t be done with Periodic Boundary Condition on personal computer. Two parallel algorithms, Atom-Decomposition Method and Spatial-Decomposition Method, for classical short-range molecular dynamics simulation are used. The two algorithms are successfully tested on a standard tight-binding benchmark problem for system sizes ranging from 20,000 to 1,6000,000 atoms on distributed-memory parallel machine which allows for message-passing of data between independently executing processors, such as linux cluster. We discuss the efficiency difference of two parallel algorithms in the same simulation. The relation between efficiency and computing processors are also discussed. Finally, the bottlenecks of parallel molecular dynamics simulation will be carried out, and the state-of-the-art ways overcomings the bottlenecks are also shown to be our future works.
[01] R. Feynman, 1960, “There's Plenty of Room at the Bottom,” Engineering & Science magazine, Vol. XXIII, No. 5.
[02] K. Drexler, 1981, “Molecular engineering: An approach to the development of general capabilities for molecular manipulation,” Proc. Natl. Acad. Sci. USA, Vol. 78, No. 9, pp. 5275-5278.
[03] http://www.nano.gov/
[04] “The 21st Century Nanotechnology Research and Development Act,” Public Law 108-153,108th Congress [S. 189] Dec. 3, 2003
[05] G. Moore, 1965, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No.8, pp. 114-117.
[06] http://www.intel.com/intel/intelis/museum/research/arc_collect/history_docs/ mooreslaw.htm
[07] J. Haile, 1997, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York.
[08] D. Rapaport, 1997, The Art of Molecular Dynamics Simulation, Cambridge University Press, London.
[09] J. Goodfellow et al., 1990, Molecular dynamics, CRC Press, Boston.
[10] M. Allen, D. Tildesley, 1991, Computer Simulation of Liquids, Oxford Science, London.
[11] D. Frenkel, B. Smit, 1996, Understanding Molecular Simulation, Academic Press, San Diego.
[12] D. Heermann, 1990, Computer Simulation Method, Springer-Verlag, Berlin.
[13] 張德富,平行處理技術,儒林圖書公司,台北,1993
[14] K. Zuse, Rechenmaschine zur Durchführung von Rechenvorschriften, die sich auf Felder von gitterartig angeordneten Feldwerten erstrecken, Pat., 1122748, 1956
[15] H. John, 1959, "A Universal Computer Capable of Executing an Arbitrary Number of Subprograms Simultaneously," Proc. EJCC., pp. 108-113.
[16] M. Conway, 1963, "A multiprocessor system design," Proc. AFIPS Fall Joint Comput. Conf., pp. 139-146.
[17] S. Plimpton, B. Hendrickson, 1995, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Computational Physics, Vol. 117, No. 1, pp. 1-19.
[18] S. Plimpton, B. Hendrickson, 1994, “A new parallel method for molecular dynamics simulation of macromolecular systems,” Journal of Computational Chemistry, Vol. 17, Issue. 3, pp. 326-337.
[19] S. Plimpton, B. Hendrickson, 1993, “Parallel Molecular Dynamics With the Embedded Atom Method,” Materials Theory and Modelling, MRS Proceedings 291, pp. 37.
[20] T. Clark, R. Hanxleden, J. McCammon, and L. Scott, 1994, “Parallelizing Molecular Dynamics using Spatial Decomposition,” Proceedings of the Scalable High Performance Computing Conference, pp. 95-102.
[21] S. Srinivasan, I. Ashok, H. Jonsson, G. Kalonji, and J. Zahorjan, 1997, “Dynamic-Domain-Decomposition Parallel Molecular Dynamics,” Computer Physics Communications, Vol. 102, No. 1-3, pp.44-58.
[22] V. Taylor, R. Stevens, and K. Arnold, 1997, “Parallel Molecular Dynamics: Implications for Massively Parallel Machines,” Journal on Parallel and Distributed Computing, Vol. 45, No. 2, pp. 166-175.
[23] P. Vashishta, A. Nakano, RK. Kalia, I. Ebbsjo, 1996, “Crack propagation and fracture in ceramic films - Million atom molecular dynamics simulations on parallel computers,” Mater. Sci. Eng. B., Vol. 37, Issue. 1-3, pp. 56-71.
[24] A. Omeltchenko, ME. Bachlechner et al., 2000, “Stress domains in Si(111) / a-Si3N4 nanopixel: Ten-million-atom molecular dynamics simulations on parallel computers,” Phys. Rev. Lett., Vol. 84, Issue. 2, pp. 318-321.
[25] K. Kadau, T. Germann, and P. Lomdahl, 2004, “Large-Scale Molecular-Dynamics Simulation of 19 Billion particles,” Int. J. Mod. Phys. C, Vol. 15, No. 1.,
[26] J. Irving, J. Kirkwood, 1950, ”The statistical mechanical theorey of transport properties. IV. The equations of hydrodynamics,” Journal of Chemical Physics, Vol. 18, pp. 817-829.
[27] G. Maitland, M. Rigby, E. Smith, and W. Wakeham, 1987, Intermolecular Forces, Oxford University Press, London.
[28] S. Erkoc, 2001, Annual Reviews of Computational IX, World Scientific Publishing Company, Singapore.
[29] R. Smith et al., 1997, Atomic & Ion Collisions in Solids and at Surfaces, Cambridge University Press, London.
[30] K. Maekawa, A. Itoh, 1995, "Friction and tool wear in nano-scalemachining- a molecular dynamics approach," Wear, Vol. 188, pp.115-122.
[31] S. Foiles, M. Baskes, and M. Daw, 1986, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B. Vol. 33, Issue. 12, pp. 7983-7991.
[32] M. Daw, S. Foiles, and M. Baskes, 1993, “The embedded-atom method: a review of theory and applications,” Materials Science Reports, Vol. 9, Issue. 7-8, pp. 251-310.
[33] M. Baskes, J. Nelson, and A. Wright, 1989, “Semiempirical modified embedded-atom potentials for silicon and germanium,” Phys. Rev. B., Vol. 40, Issue. 9, pp. 6085-6100.
[34] M. Baskes, 1992, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B, Vol. 46, Issue. 5, pp. 2727-2742.
[35] J. Slater, G. Koster, 1954, "Simplified LCAO method for periodic potential problem," Physical Review, Vol. 94, No. 6, pp. 1498-1524.
[36] C. Kittle, 1996, Introduction to Solid State Physics, John Wiley & Sons, New York.
[37] 劉東昇,化學量子力學,徐氏基金會出版,台北,1992
[38] 江元生,結構化學,五南圖書出版,台北,1998
[39] L. Colombo, 1998,"A source code for tight-binding molecular dynamicssimulation," Computational Materials Science, Vol. 12, pp. 278-287.
[40] V. Rosato, M. Guillope, and B. Legrand, 1989, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model,” Philosophical Magazine A, Vol. 59, No. 2, pp. 321-336.
[41] F. Cleri, and V. Rosato, 1993, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B, Vol. 48, Issue. 1, pp. 22-33.
[42] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, 1988, Solving Problems on Concurrent Processors: Volume I, Prentice Hall, Englewood Cliffs, NJ.
[43] Amdahl, G.M., 1967, “Validity of the single-processor approach to achieving large scale computing capabilities,” AFIPS Conference Proceedings, Vol. 30 AFIPS Press, pp. 483-485.
[44] Gustafson, J.L., 1988, “Reevaluating Amdahl's Law," CACM, Vol. 31, No. 5, pp. 532-533.
[45] T. Lewis, H.Rewini,.1992, Introduction to Parallel Computing, Prentice-Hall, New Jersey, pp. 31-32, 38-39.
[46] A. Jabbarzadeh, JD. Atkinson, RI,Tanner, 2003, “A parallel algorithm for molecular dynamics simulation of branched molecules,” Comput Phys Commun, Vol. 150, Issus. 2, pp. 65-84.
[47] Y, Komeiji, M, Haraguchi, U, Nagashima, 2001, “Parallel molecular dynamics simulation of a protein,” Parallel Comput, Vol. 27, Issue. 8, pp. 977-987.