簡易檢索 / 詳目顯示

研究生: 陳琮翰
Chen, Tsung-Han
論文名稱: 薄梁附加局部共振器之波傳分析
Wave Propagation in a Thin Beam with Local Resonators
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 63
中文關鍵詞: 振動超穎材料局部共振
外文關鍵詞: Vibration, Metamaterial, Local Resonance
相關次數: 點閱:170下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構振動通常伴隨著噪音與疲勞失效,本篇論文主要研究波傳遞於超穎材料之平板模擬與實驗分析。週期性結構之特性為阻擋某特定頻率下波通過,利用懸臂梁做為等效剛性與質量塊的搭配而得到一個局部共振頻率,在該頻率下波衰減可以達到很好的減振效果。本論文使用ABAQUS有限元素分析模擬軟體,模擬了薄板內有單諧振器、雙諧振器與三維結構的波傳遞分析。並製造加工出含雙諧振器薄板進行振動實驗,驗證模擬結果。

    Vibration of structure usually accompanies noise and fatigue. In this thesis, we studied the wave propagation of a thin beam with multi-resonators numerically and experimentally. It is demonstrated that the structure with internal resonators is capable of blocking the wave in particular frequency. The cantilever-mass microstructures are used as the interior resonators. Local resonance frequencies can be approximately estimated using a cantilever effective stiffness and mass system. We used finite element software (ABAQUS) to simulate the propagation behavior of a thin beam with a single-resonator/dual-resonator system. Furthermore, we manufactured the thin beam with dual-resonator and conducted the vibrating experiment to verify the simulating results.

    中文摘要 Ⅰ Abstract Ⅱ Acknowledgment Ⅲ List of Figures Ⅵ List of Tables Ⅹ Nomenclature ⅩⅠ CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 1 1.3 Chapter Outline 3 CHAPTER 2 Theory 4 2.1 The Deflection Curve of Cantilever Beam 4 2.1.1 Deflection of a Cantilever Beam under Tip Load 6 2.1.2 Effective Stiffness of Cantilever Beam 7 2.2 A Single-resonator Mass-in-mass System 8 2.3 A Two-resonator Mass-in-mass System 9 2.4 Local Resonance Frequency of Microstructure 10 CHAPTER 3 Finite Element Simulations 12 3.1 Introduction of ABAQUS 12 3.2 Finite Element Modeling of Thin Metamaterial beam 15 CHAPTER 4 Finite Element Simulations 22 4.1 Two-dimensional Structure with a Single-resonator System 22 4.1.1 A Thin beam with Single Cantilever-mass System 23 4.1.2 A Thin beam with an Interior Square Cut-out 26 4.2 Three-dimensional Structure with a Single-resonator System 30 4.3 Two-dimensional Structure with a Dual-resonator System 35 4.3.1 Main resonator 37 4.3.2 Secondary resonator 40 CHAPTER 5 Vibration Experiment 43 5.1 Purpose of the Experiment 43 5.2 Experiment Equipment 43 5.2.1 Electromagnetic Shaker 43 5.2.2 Boundary Conditions of Experiment 45 5.2.3 Uniaxial Accelerometers 47 5.2.3 LabVIEW 49 5.2.3 Introduction to DAQ – Data Acquisition 52 5.3 Experiment Setup 53 5.4 Experimental Results 54 5.4.1 Comparing the Result of the Numerical Simulation and Experiment 57 CHAPTER 6 Conclusions 61 Reference 62

    [1] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng.(2000).“Locally resonant sonic materials”, Science 289, 1734-1736.
    [2] N. Fang, D. Xi, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang.(2006).“Ultrasonic metamaterials with negative modulus”, Nature Materials 5, 452-456.
    [3] H. H. Huang and C. T. Sun. (2009). ”Wave attenuation mechanism in an acousticmetamaterial with negative effective mass density”, New Journal of Physics 11, 013003.
    [4] G. L. Huang and C. T. Sun. (2010). “Band gaps in a multiresonator acoustic metamaterial”, Journal of Vibration and Acoustics132, 031003.
    [5] R. Zhu , G. L. Huang, H.H. Huang, and C. T. Sun. (2011). “Experimental and numerical study of guided wave propagation in a thin metamaterial plate”, Physics Letters A 375, 30-31.
    [6] H. H. Huang, C. T. Sun, and G. L. Huang. (2009). ‘On the negative effective mass density in acoustic metamaterials’, International Journal of Engineering Science 47, 610-617.
    [7] G. L. Huang and C. T. Sun. (2010). “Band gaps in a multiresonator acoustic metamaterial”, J. Vib. Acoust 132, 031003.
    [8] K. T. Tan, H. H. Huang, and C. T. Sun. (2012). ‘Optimizing the band gap of effective mass negativity in acoustic metamaterials’, Appl. Phys. Lett. 101, 241902.
    [9] ABAQUS 6.12 analysis user’s manual volume: introduction, spatial modeling, execution & output.
    [10] ABAQUS Inc. Getting started with ABAQUS : version 6.8 (Providence, RI : Dassault Systèmes, c2008.)
    [11] James M. Gere and Barry J. Goodno. ”mechanics of materials”, Cengage learning, 485-493.
    [12] J. Denmark, 1984, Mechanical Vibration and Shock measurement, New Jersey: Bruel & Kjaer.
    [13] LabVIEW User Manual, Part Number 320999E-01, 2003 Edition
    [14] X.M. Zhou and G.K. Hu. (2009). “Analytic model of elastic metamaterials with local resonances”, Phys. Rev. B 79, 195109.
    [15] Brüel & Kjær. ‘Transducers and Conditioning’, 79-80.
    [16] Y. K. Hung. “Vibration Reduction of Beams using Antiresonance Mechanism”, S. M. Thesis (National Cheng Kung University).

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE