| 研究生: |
陳慶頤 Chen, Ching-Yi |
|---|---|
| 論文名稱: |
以力學觀點評估傷口注射膠原蛋白、透明質酸及明膠對皮膚癒合的影響 Mechanical Evaluations of the Influence of Collagen, Hyaluronan and Gelatin Injections on Skin Wound Healing |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 傷口癒合 、生物性材料 、拉伸強度 、膠原蛋白 、明膠 、透明質酸 |
| 外文關鍵詞: | Wound Healing, Biomaterials, Tensile Strength, Collagen, Hyaluronan, Gelatin |
| 相關次數: | 點閱:207 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
術後加速傷口癒合且減小疤痕大小一直是學者積極努力的目標。在過去,已有多種物理性刺激因子與敷傷材料被研究其對傷口癒合的影響;然而,鮮少研究以皮膚的力學性質作為傷口癒合指標。多種生物性材料已作為臨床上的使用,本研究使用大鼠傷口模型,將膠原蛋白(Collagen)、明膠(Gelatin)與透明質酸(HA)與其複合物等不同生物性材料注射於縫合的傷口,在1、2、4、6與8週分別以拉力測試測量皮膚拉伸強度作為皮膚癒合指標、使用組織切片染色了解癒合組織生長情況以及膠原蛋白定量觀察胞外基質的生成情況。
結果發現材料注射會有不同的疤痕外觀。癒合初期傷口在在單一材料注射會有縫線疤痕;複合材料則是有較大且向內微凹的傷疤。癒合晚期則複合材料有較相似於正常皮膚之外觀。力學性質恢復得知,HA較所有材料注射組有較高的力學性質恢復情況,其他組彼此間均無其差異性。組織切片觀察顯示,單一材料有較快的表皮恢復情況且真皮層組織內部結構較為緻密;複合材料則是具有較於相似正常皮膚真皮組織細部的構型。於組織內膠原蛋白生成量比例結果發現,除單一材料於癒合時期2週Gelatin與HA組有較高的分泌量之外,彼此間無明顯差異。
綜合以上結論發現,單一材料對於癒合初期表皮癒合與再上皮化程度提供顯著效果;癒合初期具有較佳的傷口密合,癒合晚期擁有較佳的皮膚拉伸強度與恢復情況,但存在隱約縫線的縫線疤痕。複合材料作用效果可能著重於癒合後期真皮結構的加速新生與重組。
Quick and smooth skin healing is the goal in wound healing researches. In the past, several physical stimulating factors and wound dressing materials have been studied for their influences on wound healing. However, only few studies investigated the mechanical recovery of healing wound. Several biological materials have been used in clinical practice. Natural materials such as Type I collagen, Hyaluranon (HA), gelatin and their composite are similar to the composition of natural skin and have beneficial potential in cell proliferation, differentiation and ECM synthesis at wound sites. So far, no research has reported the mechanical recovery of the healing skin by injecting those natural biomaterials directly into the wound site. The aim of this study was to investigate the mechanical recovery influences of injectable biomaterials such as collagen, HA, gelatin and their composite on incisional wound injury in rat model. Tensile strength of healing skin was measured at 1, 2, 4, 6 and 8 weeks after incision; than, the correlated recovery index was calculated. The architecture of skin-wound was observed with histological section and collagen synthesis was measured.
The results showed that different biomaterial injection provided different scar pattern. Mono biomaterial groups had suture-scar pattern and mixed biomaterial groups had sunken scar pattern. The HA group had the best recovery results of mechanical properties compared with other groups. Histological observations exhibited that mono biomaterial groups had faster epidermis recovery and more compact dermis architecture. The mixed group had similar dermis architecture to normal skin. Collagen synthesis ratio showed that Gelatin and HA group had a higher collagen content at 2 weeks of healing time. Overall, mono biomaterial had significant effects on epithelial wound healing and re-epithelialization during early stage. In the late stage, the skin had a better tensile strength and recovery index, but there were slight suture-scar at wound site. Effect of mixed biomaterials might focus on regeneration and remodeling of the architecture of skin-wound.
1. Marieb E.N., M.J., Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings. 2008.
2. Wayne K. S., A.G.D., Gordon R. T. , Physiology and healing dynamic of chronic cutaneous wounds. . The American Journal of Surgery, 1998. 76(Suppl 2A): p. 26S-38S.
3. Dorsett-Martin, W.A., Rat models of skin wound healing: a review. Wound Repair Regen, 2004. 12(6): p. 591-9.
4. Davidson, J.M., Animal models for wound repair. Arch Dermatol Res, 1998. 290 Suppl: p. S1-11.
5. http://www.goodpsych.com/stress-psychology/.
6. Singer A.J., C.R.A.F., Cutaneous wound healing. . New England Journal of Medicine., 1991. 341: p. 738-746.
7. King, S., Catrix: an easy-to-use collagen treatment for wound healing. Br J Community Nurs, 2005. 10(9): p. S31-4.
8. McCarthy, R.A. and E.D. Hay, Collagen I, laminin, and tenascin: ultrastructure and correlation with avian neural crest formation. Int J Dev Biol, 1991. 35(4): p. 437-52.
9. Lee, S.B., et al., Bio-artificial skin composed of gelatin and (1-->3), (1-->6)-beta-glucan. Biomaterials, 2003. 24(14): p. 2503-11.
10. Courts, F.J., Standardization and calibration in the evaluation of clinical performance. J Dent Educ, 1997. 61(12): p. 947-50.
11. Choi, Y.S., et al., Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res, 1999. 48(5): p. 631-9.
12. http://www.glycoforum.gr.jp/science/hyaluronan/hyaluronanE.html.
13. Toole, B.P., Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer, 2004. 4(7): p. 528-39.
14. Fraser, J.R., T.C. Laurent, and U.B. Laurent, Hyaluronan: its nature, distribution, functions and turnover. J Intern Med, 1997. 242(1): p. 27-33.
15. Chen, W.Y. and G. Abatangelo, Functions of hyaluronan in wound repair. Wound Repair Regen, 1999. 7(2): p. 79-89.
16. chemical formula of hyaluronic acid _ http://upload.wikimedia.org/wikipedia/commons/9/90/Hyaluronan.png
17. Levenson, S.M., et al., The Healing of Rat Skin Wounds. Ann Surg, 1965. 161: p. 293-308.
18. Hollander, D.A., et al., Standardized qualitative evaluation of scar tissue properties in an animal wound healing model. Wound Repair Regen, 2003. 11(2): p. 150-7.
19. Mesa, F.L., et al., Antiproliferative effect of topic hyaluronic acid gel. Study in gingival biopsies of patients with periodontal disease. Histol Histopathol, 2002. 17(3): p. 747-53.
20. Greco, R.M., J.A. Iocono, and H.P. Ehrlich, Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J Cell Physiol, 1998. 177(3): p. 465-73.
21. Longaker, M.T., et al., Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg, 1991. 213(4): p. 292-6.
22. West, D.C. and M. Yaqoob, Serum hyaluronan levels follow disease activity in vasculitis. Clin Nephrol, 1997. 48(1): p. 9-15.
23. Nishida, T., et al., Hyaluronan stimulates corneal epithelial migration. Exp Eye Res, 1991. 53(6): p. 753-8.
24. Hu, M., et al., Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J Biomed Mater Res B Appl Biomater, 2003. 67(1): p. 586-92.
25. Clark, R.A., Cutaneous tissue repair: basic biologic considerations. I. J Am Acad Dermatol, 1985. 13(5 Pt 1): p. 701-25.
26. Singer, A.J. and R.A. Clark, Cutaneous wound healing. N Engl J Med, 1999. 341(10): p. 738-46.
27. Huang-Lee, L.L. and M.E. Nimni, Crosslinked CNBr-activated hyaluronan-collagen matrices: effects on fibroblast contraction. Matrix Biol, 1994. 14(2): p. 147-57.
28. De Vries, H.J., et al., Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. Br J Dermatol, 1995. 132(5): p. 690-7.
29. Li, S.T., Collagen Biotechnology and its Medical Applications Biomedical Engineering - Applications, Basis & Communications, 1993. 5: p. 646-657.
30. Zhao, Y., et al., Tissue regeneration using macrophage migration inhibitory factor-impregnated gelatin microbeads in cutaneous wounds. Am J Pathol, 2005. 167(6): p. 1519-29.
31. Miyoshi, M., et al., Effects of bFGF incorporated into a gelatin sheet on wound healing. J Biomater Sci Polym Ed, 2005. 16(7): p. 893-907.
32. Lawrence, P.A., Developmental biology. Compartments in vertebrates? Nature, 1990. 344(6265): p. 382-3.
33. Morin, G., et al., Wound healing: relationship of wound closing tension to tensile strength in rats. Laryngoscope, 1989. 99(8 Pt 1): p. 783-8.
34. Muehlberger, T., et al., The effect of topical tretinoin on tissue strength and skin components in a murine incisional wound model. J Am Acad Dermatol, 2005. 52(4): p. 583-8.
35. Kadler, K., Extracellular matrix 1: Fibril-forming collagens. Protein Profile, 1995. 2(5): p. 491-619.
36. Menetrey, J., et al., Growth factors improve muscle healing in vivo. J Bone Joint Surg Br, 2000. 82(1): p. 131-7.
37. Gal, P., et al., Early changes in the tensile strength and morphology of primary sutured skin wounds in rats. Folia Biol (Praha), 2006. 52(4): p. 109-15.
38. Shephard, P., et al., Myofibroblast differentiation is induced in keratinocyte-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor-beta and interleukin-1. Am J Pathol, 2004. 164(6): p. 2055-66.
39. Pellard, S., An overview of the two widely accepted, but contradictory, theories on wound contraction. J Wound Care, 2006. 15(2): p. 90-2.