簡易檢索 / 詳目顯示

研究生: 陳峙廷
Chen, Chih-Ting
論文名稱: 微波誘發電漿對於火焰電漿之影響
The Effect of Microwave-induced Plasma on a Flame Plasma
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 112
中文關鍵詞: 電漿輔助火焰尖端放電火焰電漿微波
外文關鍵詞: plasma-assisted combustion, corona discharge, flame plasma, microwave
相關次數: 點閱:114下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題在於觀測利用浮動電極於一大氣壓下之微波共振腔中所誘發的放電電漿,對於常壓火焰電漿的物化性質之影響。在本實驗系統中,在微波產生器其輸出功率增加至200瓦後,誘發金屬針尖的尖端放電現象。微波誘導電漿對於火焰電漿的影響則利用朗謬爾探測針來進行探討﹔藉由此量測技術,實驗數據結果顯示電極針尖附近的電子溫度在微波電磁場施加過程中受到加熱至原本的350%,至於電極針尖附近的電漿密度則上升超過400%。除了受到微波誘發電場的影響,在放電過後的電極尖端附近可量測到一直流電場的存在,而此直流電場可造成些微的電漿濃度分布扭曲。從朗謬爾探針沿著燃燒器軸方向上的量測結果可以發現,該微波電場加速電子動能效應受到空間上的侷限。配合放射光譜儀的實驗結果,合理地提出微波能量的導入對於強化火焰速度與火焰穩住的應用之影響進行探討途徑。

    A microwave resonator integrated with a floated electrode was used to initiate an additional plasma source, and in the meantime examine the impact on a flame plasma at atmospheric pressure. In the current system, the corona discharge occurred at 200 W of microwave power introduction. The effect of a microwave-induced corona discharge plasma on a flame plasma is investigated by using a double Langmuir probe, through which the electron temperature around the electrode tip was found to have a significant increment by over 350 % of its original value, and the plasma concentration was increased by over 400 %. Apart from the effects of microwave field, a DC field was also observed after the plasma discharge, which led to slightly and spatially bending of the distribution of the ion concentration. The limited effective region of electron acceleration induced by the microwave field was realized from the Langmuir probe measurements along the axis of the combustor. Together with the optical emission spectrometric results measured from the gas where the discharge occurred, the mechanism of the enhanced flame speed as well as its application on flame stabilization can be rationalized.

    誌謝 I 摘要 II ABSTRACT III CONTENTS IV LIST OF TABLES VII LIST OF FIGURES IX NOMENCLATURE XV CHAPTER 1 INTRODUCTION 1 1-1 PLASMA 1 1-2 FLAME PLASMA 3 1-3 MEASUREMENTS OF FLAME PLASMA BY LANGMUIR PROBE 5 1-4 ELECTRICALLY ASSISTED COMBUSTION (EAC) AND PLASMA ASSISTED COMBUSTION (PAC) 9 1-5 PAC WITH DC FIELD 11 1-6 PAC WITH AC FIELD 13 1-7 PAC WITH NON-EQUILIBRIUM PLASMA DISCHARGES 14 1-8 PAC WITH MICROWAVE 15 1-9 MOTIVATION 19 1-10 OBJECTIVE 20 CHAPTER 2 EXPERIMENTAL SETUP 22 2-1 THE MICROWAVE SYSTEM AND THE BURNER 22 2-1-1 The Microwave system and The Tungsten Electrode 24 2-1-2 The Hencken Burner 26 2-2 THE MEASUREMENT SYSTEMS 27 2-2-1 Langmuir Probe System 27 2-2-2 Probe Configuration 29 2-2-3 Signal Generator 29 2-2-4 Power Supply 30 2-2-5 Amplifier 30 2-2-6 DAQ and Personal Computer 32 2-2-7 Optical Emission Spectroscopy (OES) 32 CHAPTER 3 LANGMUIR PROBE THEORY AND THE DERIVATION OF USEFUL EQUATIONS 34 3-1 THE CURRENT-VOLTAGE RELATION 34 3-2 CURRENT TO A CYLINDRICAL COLLECTOR 35 CHAPTER 4 VERIFICATIONS OF LANGMUIR PROBE MEASUREMENTS 47 CHAPTER 5 RESULTS 54 CHAPTER 6 CONCLUSIONS 67 6-1 UNDER CRITICAL POWER OF MICROWAVE: 67 6-2 AT AND ABOVE THE CRITICAL POWER OF MICROWAVE: 67 CHAPTER 7 FUTURE WORKS 71 7-1 THE FEATURES OF THE TRIPLE LANGMUIR PROBE 71 7-2 THE THEORY OF THE TRIPLE LANGMUIR PROBE 72 7-3 THE IGNITION OF THE FLAME 75 7-3-1 Experimental Setup 75 7-3-2 Results 76 7-4 OSCILLATION ENHANCEMENT AND SUPPRESSION OF A MIP EFFECTED FLAME 77 7-4-1 Experimental setup 77 7-4-2 Oscillations in Flame 78 7-4-3 Flame with MIP Intrusion 79 REFERENCES 84 APPENDIX 88 A1. CALCULATION OF DEBYE LENGTH AND MEAN FREE PATH IN FLAME 88 A1-1 Debye Length 88 A1-2 Mean Free Path 89 A2. MATLAB CODES FOR DOUBLE PROBE 92 A2-1 Step 1: Waveform Quality Check 92 A2-2 Step 2: Overlapping the Waveforms from Each Cycle 93 A2-3 Step 3: Waveform Smoothing 94 A2-4 Step 4: Curve Fitting 95 A2-5 Step 5: Determination of Te and ni 97 A3. MATLAB CODES FOR TRIPLE PROBE 99 A4. MATLAB CODES FOR SINGLE PROBE 100 A5. LABVIEW PROGRAMS FOR LANGMUIR PROBE DATA ACQUISITION 105 A6. UNCERTAINTY ANALYSIS OF DOUBLE PROBE MEASUREMENTS 108

    1. Calcote, H.F., Ion and electron profiles in flames. Symposium (International) on Combustion. 9(1): p. 622-637, 1963.
    2. Wortberg, G., Tenth Symposium (International) on CombustionIon-concentration measurements in a flat flame at atmospheric pressure. Symposium (International) on Combustion. 10(1): p. 651-655, 1965.
    3. Goodings, J.M., D.K. Bohme, and T.M. Sugden, Positive ion probe of methane-oxygen combustion. Symposium (International) on Combustion. 16(1): p. 891-902, 1977.
    4. MacLatchy, C.S., Langmuir probe measurements of ion density in an atmospheric-pressure air-propane flame. Combustion and Flame. 36: p. 171-178, 1979.
    5. Goodings, J.M. and N.S. Karellas, Correlated absolute ion density and temperature measurements in a flame plasma. International Journal of Mass Spectrometry and Ion Processes. 62(2): p. 199-218, 1984.
    6. Miles, R.B., et al., New diagnostic methods for laser plasma- and microwave-enhanced combustion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373(2048), 2015.
    7. Goodings, J.M., D.K. Bohme, and C.-W. Ng, Detailed ion chemistry in methaneoxygen flames. I. Positive ions. Combustion and Flame. 36: p. 27-43, 1979.
    8. Travers, B.E.L. and H. Williams, The use of electrical probes in flame plasmas. Symposium (International) on Combustion. 10(1): p. 657-672, 1965.
    9. Sahni, O., On probe measurements of electron temperature in flame plasmas. Journal of Physics D: Applied Physics. 2(3): p. 471, 1969.
    10. Engel, A.v. and J.R. Cozens, The Calorelectric Effect in Flames. Proceedings of the Physical Society. 82(1): p. 85, 1963.
    11. Bradley, D., L.F. Jesch, and C.G.W. Sheppard, Electron energy exchanges in hydrocarbon flames. Combustion and Flame. 19(2): p. 237-247, 1972.
    12. Clements, R.M., A.H. Rizvi, and P.R. Smy, Langmuir probe characteristics in a high pressure plasma in the presence of convection and ionization. IEEE Transactions on Plasma Science. 22(4): p. 435-441, 1994.
    13. Sun, W., et al., Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits. Combustion and Flame. 159(1): p. 221-229, 2012.
    14. Bak, M.S., et al., Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit. Combustion and Flame. 159(10): p. 3128-3137, 2012.
    15. Starikovskiy, A. and N. Aleksandrov, Plasma-assisted ignition and combustion. Progress in Energy and Combustion Science. 39(1): p. 61-110, 2013.
    16. Calcote, H.F., Electrical properties of flames. Symposium on Combustion and Flame, and Explosion Phenomena. 3(1): p. 245-253, 1948.
    17. Calcote, H.F. and R.N. Pease, Electrical Properties of Flames. BurnerFlames in Longitudinal Electric Fields. Industrial & Engineering Chemistry. 43(12): p. 2726-2731, 1951.
    18. Fowler, R.G. and S.J.B. Corrigan, Burning‐Wave Speed Enhancement by Electric Fields. The Physics of Fluids. 9(10): p. 2073-2074, 1966.
    19. Jaggers, H.C. and A. von Engel, The effect of electric fields on the burning velocity of various flames. Combustion and Flame. 16(3): p. 275-285, 1971.
    20. Molecular theory of gases and liquids. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird. Wiley, New York, 1954. xxvi + 1219 pp., $20.00. Journal of Polymer Science. 17(83): p. 116-116, 1955.
    21. Engel, A.v., Collisions in gases and flames involving excited particles. British Journal of Applied Physics. 18(12): p. 1661, 1967.
    22. Sakhrieh, A., et al., The influence of pressure on the control of premixed turbulent flames using an electric field. Combustion and Flame. 143(3): p. 313-322, 2005.
    23. Lawton, J. and F.J. Weinberg, Maximum Ion Currents from Flames and the Maximum Practical Effects of Applied Electric Fields. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 277(1371): p. 468-497, 1964.
    24. Jacobs, S.V. and K.G. Xu, Examination of ionic wind and cathode sheath effects in a E-field premixed flame with ion density measurements. Physics of Plasmas. 23(4): p. 043504, 2016.
    25. Ren, Y., et al., Low-frequency AC electric field induced thermoacoustic oscillation of a premixed stagnation flame. Combustion and Flame. 176: p. 479-488, 2017.
    26. Lacoste, D.A., et al., Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges. Proceedings of the Combustion Institute. 36(3): p. 4183-4192, 2017.
    27. Bradley, D. and S.H. Nasser, Electrical coronas and burner flame stability. Combustion and Flame. 55(1): p. 53-58, 1984.
    28. Ali, M., D. Bradley, and M.L. Gupta, A theoretical study of energy transfer at a negative electrostatic probe. Journal of Physics D: Applied Physics. 11(12): p. 1639, 1978.
    29. Bradley, D. and S.M.A. Ibrahim, Electron-gas energy exchanges in a.c. fields and their relevance in lasers. Combustion and Flame. 27: p. 353-362, 1976.
    30. Lacoste, D.A., et al., Effect of Nanosecond Repetitively Pulsed Discharges on the Dynamics of a Swirl-Stabilized Lean Premixed Flame. Journal of Engineering for Gas Turbines and Power. 135(10): p. 101501-101501-7, 2013.
    31. Ward, M.A.V. and T.T. Wu, A theoretical study of the microwave heating of a cylindrical shell, flame-front electron plasma in an internal combustion engine. Combustion and Flame. 32: p. 57-71, 1978.
    32. Maclatchy, C.S., R.M. Clements, and P.R. Smy, An experimental investigation of the effect of microwave radiation on a propane-air flame. Combustion and Flame. 45: p. 161-169, 1982.
    33. Ward, M.A.V., Potential Uses of Microwaves to increase Internal Combustion Engine Efficiency and Reduce Exhaust Pollutants. Journal of Microwave Power. 12(3): p. 187-198, 1977.
    34. Somerville, J.M., The Electric Arc. 1959: Methuen.
    35. Jensen, D.E. and B.E.L. Travers, Flame Plasma Diagnostic Techniques. IEEE Transactions on Plasma Science. 2(1): p. 34-45, 1974.
    36. Engelhardt, A.G., A.V. Phelps, and C.G. Risk, Determination of Momentum Transfer and Inelastic Collision Cross Sections for Electrons in Nitrogen Using Transport Coefficients. Physical Review. 135(6A): p. A1566-A1574, 1964.
    37. Hake, R.D. and A.V. Phelps, Momentum-Transfer and Inelastic-Collision Cross Sections for Electrons in ${mathrm{O}}_{2}$, CO, and C${mathrm{O}}_{2}$. Physical Review. 158(1): p. 70-84, 1967.
    38. Groff, E.G. and M.K. Krage, Microwave effects on premixed flames. Combustion and Flame. 56(3): p. 293-306, 1984.
    39. Satoru, O., et al., Influence of Microwave on Methane-Air Laminar Flames. Japanese Journal of Applied Physics. 37(1R): p. 179, 1998.
    40. Stockman, E.S., et al., Measurements of combustion properties in a microwave enhanced flame. Combustion and Flame. 156(7): p. 1453-1461, 2009.
    41. Li, H.-Y., P.-H. Huang, and Y.-C. Chao, Flame Enhancement by Microwave-Induced Plasma: The Role of Major Bath Gas N2 Versus Ar. Combustion Science and Technology. 188(11-12): p. 1831-1843, 2016.
    42. Li, H.-Y., Stabilization of the Sub-limit Lean Premixed Flame by Concentrated-microwave Burner. 中國機械工程學刊. 36(2): p. 119-124, 2015.
    43. Mott-Smith, H.M. and I. Langmuir, The Theory of Collectors in Gaseous Discharges. Physical Review. 28(4): p. 727-763, 1926.
    44. Hutchinson, I.H., Principles of Plasma Diagnostics: Second Edition. Plasma Physics and Controlled Fusion. 44(12): p. 2603, 2002.
    45. Ombrello, T., C. Carter, and V. Katta, Burner platform for sub-atmospheric pressure flame studies. Combustion and Flame. 159(7): p. 2363-2373, 2012.
    46. Hancock, R.D., K.E. Bertagnolli, and R.P. Lucht, Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner. Combustion and Flame. 109(3): p. 323-331, 1997.
    47. Bradley, D. and S.M.A. Ibrahim, Electron temperatures in flame gases: experiment and theory. Combustion and Flame. 24: p. 169-171, 1975.
    48. Clements, R.M. and P.R. Smy, Langmuir-probe measurement of electron temperature in a flowing high-density plasma. Electronics Letters. 6(17): p. 538-539, 1970.
    49. Laux, C.O., et al., Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Science and Technology. 12(2): p. 125, 2003.
    50. Li, H.-Y., Development of a Novel Microwave-Plasma Stabilization Mechanism for Flame Stabilization and Electric Propulsion. 2013.
    51. Naz, M.Y., et al., Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma. Progress In Electromagnetics Research. 114: p. 113-128, 2011.
    52. Kostiuk, L.W. and R.K. Cheng, Imaging of premixed flames in microgravity. Experiments in Fluids. 18(1): p. 59-68, 1994.
    53. Chen, F.F., Introduction to plasma physics and controlled fusion. 1984: Second edition. New York : :Plenum Press, c1984-.
    54. Johnson, E.O. and L. Malter, A Floating Double Probe Method for Measurements in Gas Discharges. Physical Review. 80(1): p. 58-68, 1950.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE