| 研究生: |
洪思維 Hung, Sz-wei |
|---|---|
| 論文名稱: |
透水筐網圓柱距離底床不同高度之流場試驗研究 Experimental study on flow patterns around the porous cylinder for different height above the bottom |
| 指導教授: |
黃進坤
Huang, Chin-kun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 穩定低速區 、穿越流 、筐網圓柱 、表面空隙比 |
| 外文關鍵詞: | Porous cylinder, Void proportion, Steady low-velocity area, Bleed flow |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討水流通過透水性筐網圓柱體,在離底床不同高度的流場特性。在平均來流速度(24.6 cm/sec)及平均水深(16 cm)之條件下,探討表面孔隙比及抬升高度,並使用三維下視型及二維側視型之聲波都普勒流速儀來量測流場之流速分佈。
經由實驗結果與相關理論驗證得知,水流通過筐網圓柱體後,流速將因筐網圓柱體後方的遮蔽效應而降低。另外,流入結構物內部而抵達柱體後方之穿越流具有穩定流場的特性,故於筐網圓柱體後方會形成一流況穩定之低流速區域,稱為「穩定低速區」。
This study uses the measurement of flow-field to analyze the characteristics of the fluid motion in the permeable porous cylinder at different height from the bottom , such as velocity distribution at centre section of cylinder . The relation between flow structure and physical parameters of porous cylinder at different height from the bottom , including void proportion and the heigh of uplift , is investigated .
According to the experiment results and the confirmation of related researches, flow velocity decreases after running through the porous cylinder because of the shelter effect. The “bleed flow,” which goes through inner structure and reaches the backward of porous cylinder, has the function to steady flow-field, so there is a steady and low-velocity area behind the porous cylinder, called “steady low-velocity area .”
On the same experimental condition (the averaged flow-velocity is 24.6 cm/sec, the averaged flow depth is 16 cm) , using of acoustic Doppler velocimeter to measure the fiow velocity distribution .
1.Akilli, H. and Rockwell, D., “Vortex formation from a cylinder in shallow water,” Physics of Fluids, Volume 14, Number 9, pp.2957 -2967, 2002.
2.Baker, C. J., “The Laminar Horseshoe Vortex,” Journal of Fluid Mech., Volume 95, part 2, pp.347-367, 1979.
3.Besir Sahin, N. Adil Ozturk and Hüseyin Akilli, “Horseshoe vortex system in the vicinity of the vertical cylinder mounted on a flat plate,” Flow Measurement and Instrumentation, 10.1016/ j.flowmeasinst.12.002, 2006.
4.Bhattacharyya, S., Dhinakaran, S. and Khalili, A., “Fluid motion around and through a porous cylinder,” Chemical Engineering Science 61, pp.4451-4461, 2006.
5.Daoyi Chen and Gerhard H. Jirka, “Experimental study of plane turbulent wakes in a shallow water layer,” Fluid Dynamics 16, pp. 11-41, 1995.
6.Edimilson J. Braga and Marcelo J.S. de Lemos, “Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model,” International Journal of Heat and Mass Tranfer 49, pp.4340-4351, 2006.
7.Fransson, J. H. M., Konieczny, P. and Alfredsson, P. H., “Flow around a porous cylinder subject to continuous suction or blowing,” Journal of Fluids and Structures 19, pp.1031-1048, 2004.
8.Gabbai, R. D. and Benaroya, H., “An overview of modeling and experiments of vortex-induced vibration of circular cylinders,” Journal of Sound and Vibration 282, pp.575-616, 2005.
9.Kawaji, Y. and Ikemoto, K., “Feedback control of vortex shedding from a circular cylinder by rotational oscillations,” Journal of Fluids and Structures 15, pp.23-37, 2001.
10.Kim, T., Hodson, H. P. and Lu, T. J., “Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight,” International Journal of Heat and Mass Transfer 48, pp.4243-4264, 2005.
11.Kiya, M. and Matsunura, M., “Incoherent turbulence structure in the near wake of a normal plate,” Journal of Fluid Mech., Vol. 190, pp. 343-356.
12.Konstantinos Marakkos and John T. Turner, “Vortex generation in the cross-flow around a cylinder attached to an end-wall,” Optics & Laser Technology 38, pp.277-285, 2006.
13.Laura Zima and Norbert L. Ackermann, “Wave Generation in Open Channels by Vortex Shedding from Channel Obstructions,” Journal of Hydraulic Engineering 128:6, pp.596-603, 2002.
14.Lienhard, J. h., “Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders,” Washington State University, College of Engineering, Research Division Bulletin, pp.300, 1966.
15.Lin, Y., So, R. M. C. and Cui, Z. X., “A finite cantilevered cylinder in a cross-flow,” Journal of Fluids and Structures 20, pp.589-609, 2005.
16.Marco Vanni, “Creeping flow over spherical permeable aggregates,” Chemical Engineering Science 55, pp.685-698, 2000.
17.Mathelin, L., Bataille, F. and Lallemand, A., “Near wake of a circular cylinder submitted to blowing - Ⅰ,” International Journal of Heat and Mass Transfer 44, pp.3701-3708, 2000.
18.Mathelin, L., Bataille, F. and Lallemand, A., “Near wake of a circular cylinder submitted to blowing - Ⅱ,” International Journal of Heat and Mass Transfer 44, pp.3709-3719, 2000.
19.Mathelin, L., Bataille, F. and Lallemand, A., “The effect of uniform blowing on the flow past a circular cylinder,” Journal of Fluids Engineering 124 (2), pp.452–464, 2002.
20.Muammer Ozgoren, “Flow structure in the downstream of square and circular cylinders,” Flow Measurement and Instrumentaion 17, pp.225-235, 2005.
21.Munshi, S. R. and Modi, V. J., “Aerodynamics and dynamics of rectangular prisms with momentum injection,” Journal of Fluids and Structures 11, pp.873-892, 1997.
22.Norberg, C., “Fluctuating lift on a circular cylinder: review and new measurements,” Journal of Fluids and Structures 17, pp.57-96, 2003.
23.Roger L Simpson, “Junction Flows,” Fluid Mech., 33:415-443, 2001.
24.Sahin, B., Akkoca, A., Öztürk, N. A. and Akilli, H., “Investigations of flow characteristics in a plate fkin and tube heat exchanger model composed of single cylinder,” International Journal of Heat and Fluid Flow 27, pp.522-530, 2006.
25.Von Karman, T., “Uber den Mechanismuss des Windersstandes den ein bewegter Korper in einen Flussigkeit Erfahart,” Nachrichten der k. Gesellschaft der Wissenschaften zu Gottingen, pp.547-556, 1912.
26.Wang, H. F., Zhou, Y., Chan, C. K. and Lam, K. S., “Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake,” Physics of Fluids 18, 065106, pp.1-12, 2006.
27.Wontae Kim, Jung Yul Yoo, and Jaeyong Sung, “Dynamics of vortex lock-on in a perturbed cylinder wake,” Physics of Fluids 18, 074103, pp.1-22, 2006.
28.Xie, O. and Wroblewski, D., “Effect of periodic unsteadiness on heat transfer in a turbulent boundary layer downstream of a cylinder-wall junction,” Int. J. Heat and Fluid Flow 18, pp.107-115, 1997.
29.Zhang, H. J., Zhou, Y. and Antonia, R. A., “Longitudinal and spanwise vortical structures in a turbulent near wake,” Physics of Fluids, Volume 12, Number 11, 2000.
30.Subhasish Dey , Rajkumar V. Raikar and Abhishek Roy , “Scour at submerged cylindrical obstacles under steady flow,” Journal of hydraulic engineering , Asce ,January 2008.
31.吳虹邑 (2005),「筐網結構物對橋墩沖刷保護之研究」,成功大學水利及海洋工程研究所碩士論文。
32.林呈、謝世圳 (2002),「應用PIV與FLDV同步量測技術於單圓柱尾流流場之特性探討」,第十三屆水利工程研究會論文,頁M45~M52。
33.柯亭帆、林正祥、吳志興 (1996),「亂流通過不同迎面角度方形柱周圍流場之分析」,第八屆水利工程研討會論文,頁297~304。
34.洪勝榮、張三郎、黃進坤、洪丕振、徐立昌 (2006),「筐網結構物對凹岸沖刷保護現地測試探討」,水利,第16期,頁97~103。
35.徐華勇 (2002),「應用PIV探討圓柱及平版尾流流場之速度分佈特性」,中興大學土木工程研究所碩士論文。
36.黃偉哲 (2002),「水流通過透水式橋墩保護工之流況分析」,,成功大學水利及海洋工程研究所碩士論文。
37.黃進坤 (2006),「橋墩保護新工法之研究」,台灣公路工程,第32卷第8期,頁39-44。
38.傅家揚 (2006),「筐網結構物在不同水流攻角對橋墩沖刷保護之影響」,成功大學水利及海洋工程研究所碩士論文。
39.石武融 (2007),「透水性筐網圓柱之流場試驗研究」,成功大學水利及海洋工程研究所碩士論文。
40.張書唐 (2007),「透水結構物上方臨界條件之探討」,成功大學水利及海洋工程研究所碩士論文。