| 研究生: |
陳緯守 Chen, Wei-Shou |
|---|---|
| 論文名稱: |
氮化鎵系列覆晶式發光二極體於亮度與可靠度之研究 Investigation of GaN-Based Flip-Chip LEDs in Brightness and Reliability |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 覆晶式發光二極體 |
| 外文關鍵詞: | Flip-Chip LEDs |
| 相關次數: | 點閱:92 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討高效能氮化鎵系列覆晶式發光二極體之研究。
首先,我們採用具備透明歐姆層與反射鏡面層的組合作為覆晶式發光二極體的主體結構。而研究中發現較適用於這兩層結構的材料為鎳與銀。以此材料設計搭配快速回火製程之長360微米、寬280微米尺寸的發光二極體在20毫安培電流操作時,操作電壓約為3.15伏特,輸出必v相對於一般傳統上非覆晶式發光二極體可提升75%而達16毫瓦。而此種結構的覆晶式發光二極體在可靠度方面的測試亦優於非覆晶式的發光二極體。
進一步為增強發光二極體的輸出發光強度,我們也針對以氧化銦錫搭配鎳為材料的透明歐姆層之發光二極體加以研究。發現經設計的快速回火製程與適當厚度之氧化銦錫搭配鎳之透明歐姆層的發光二極體將可提升30%的亮度而達21毫瓦,並且可保持操作電壓不會升高。而相同的發光二極體在長時間可靠度測試上,也只衰減5%的亮度。
另外在1000微米見方之尺寸的高必v發光二極體應用方面,我們研究了以研磨技術在藍寶石基板背面製作具有高度落差的粗操表面,應用在覆晶式發光二極體將可提升35%的亮度並且亦提升發光二極體的可靠度。
另一方面,由於散熱一直是高必v發光二極體的關鍵問題,因此我們研究以高導熱的銅基板應用在覆晶式發光二極體可降低發光二極體在高電流操作時的電壓與降低發光二極體的接面溫度進而提升可靠度,使得發光二極體在長時間燒測後仍可維持九成以上的發光強度。
更深入地,我們研製將抗靜電元件製作在銅基板上應用於覆晶式發光二極體除了可避免一般將元件製作在發光二極體晶粒上因而降低發光面積的缺點外亦可大幅提高發光二極體的承受靜電壓值,約傳統非覆晶式發光二極體的九倍,且將不會影響發光二極體其他的光電特性與穩定度。
In this dissertation, high performance nitride-based flip-chip (FC) light-emitting diodes (LEDs) were investigated and fabricated.
Firstly, the structure of FC LEDs with transparent ohmic contact and reflective mirror was designed and Ni and Ag were proper materials for them. It was found voltages measured from rapid thermal annealed (RTA) FC LEDs (280 μm X 360 μm) with Ni and Ag layers were 3.15 V at a 20-mA forward current while output powers were improved about 75% and were 16 mW, compared with the traditional non-flip-chip (NFC) LEDs. The same structure was also found making lifetimes longer for FC LEDs as compared with NFC LEDs.
To enhance output intensity furthermore, indium-tin-oxide (ITO)/Ni films as transparent ohmic contacts of FC LEDs were studied. It was observed RTA ITO/Ni films could provide good electrical and optical properties to improve powers about 30%, which were 21mW and keep voltages stable for FC LEDs applications. Output intensity only decayed by 5% after long-time reliability test.
For power FC LEDs (1000 μm X 1000 μm) in addition, we reported the fabrication with roughened surface of sapphire backside prepared by grinding process could increase output power by about 35%. And the surface was rough with a typical peak-to-valley distance. Reliability of the proposed FC LEDs with rough surfaces was also better, as compared to that with conventional flat surfaces.
On the other hand, heat dissipation is a key issue for power chip LEDs. In our research, Cu sub-mounts were studied to replace conventional ones. With a much higher thermal conductivity, we could achieve a lower operation voltage under high current injections and a lower junction temperature from the power FC LEDs with Cu sub-mounts. Compared with the power FC LEDs with Si sub-mount, the reliability of the proposed LEDs was much better. And the EL intensity remained above 90% after operated during long time.
Further, we found the internal ESD protection devices fabricated in Cu sub-mounts could not only avoid lighting area losses for FC LEDs, compared to those fabricated in LED chips but also provide good ESD protection function. It was achieved that negative ESD thresholds could be notably increased. And the values were about 9 times larger than those of traditional NFC LEDs. It also suggested the ESD protection devices in Cu sub-mounts would not affect electro-optical and reliability properties for FC LEDs.
[1] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes”, Appl. Phys. Lett., Vol. 67, pp. 1868-1870 (1995).
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN/GaN multiquantum well blue and green light emitting diodes”, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 278-283 (2002).
[3] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhancing the output power of Gain-based LEDs grown on wet-etched patterned sapphire substrates”, IEEE Photon. Technol. Lett., Vol. 18, pp. 1152-1154 (2006).
[4] S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
[5] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, “InGaN/GaN tunnel injection blue light-emitting diodes”, IEEE Trans. Electron. Devices., Vol. 49, pp. 1093–1095 (2002).
[6] L. W. Wu, S. J. Chang, T. C.Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, “Influence of Si-doping on the characteristics of InGaN/GaN multiple quantum well blue light-emitting diodes”, IEEE J. Quantum. Electron., Vol. 38, pp. 446–450 (2002).
[7] C. H. Kuo, S. J. Chang, Y. K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, “InGaN/GaN light emitting diodes activated in O ambient”, IEEE Electron. Device. Lett., Vol. 23, pp. 240–242 (2002).
[8] T. Mukai, M. Yamada and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes”, Jpn. J. Appl. Phys., Vol. 38, pp. 3976–3981 (1999).
[9] I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III-nitride semiconductors and their applications to short wavelength light emitters”, Jpn. J. Appl. Phys., Vol. 36, pp. 5393–5408 (1997).
[10] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high brightness InGaN/AlGaN double hetrostructure blue light emitting diodes”, Appl. Phys. Lett., Vol. 64, pp. 1687–1689 (1994).
[11] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, “400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 744-748 (2002).
[12] C. F. Shih, N. C. Chen, P. H. Chang and K. S. Liu, “Effect of surface electronic states of p-type GaN on the blue-light-emitting diodes”, J. Electrochem. Soc., Vol. 152, pp. G816-G818 (2005).
[13] R. H. Horng, D. S.Wuu, Y. C. Lien andW. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN”, Appl. Phys. Lett., Vol. 79, pp. 2925–2927 (2001).
[14] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, S. J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen, and B. R. Huang, “Nitride-based light-emitting diodes with Ni/ITO p-type ohmic contacts”, IEEE Photon. Technol. Lett., Vol. 14, pp. 1668–1670 (2002).
[15] S. J. Chang, C. S. Chang, Y. K. Su, R.W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, “Highly reliable nitride-based LEDs with SPS + ITO upper contacts”, IEEE J. Quantum. Electron., Vol. 39, pp. 1439–1443 (2003).
[16] S. C. Shei, J. K. Sheu and C. F. Shen, “Improved reliability and ESD characteristics of flip-chip GaN-based LEDs with internal inverse-parallel protection diodes”, IEEE Electron Device Lett., Vol. 28, pp. 346- 349 (2007).
[17] S. J. Chang, W. S. Chen, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, C. F. Shen, J. M. Tsai and S. C. Shei, “Nitride-based flip-chip LEDs with transparent ohmic contacts and reflective mirrors”, IEEE Tran. Adv. Packaging, Vol. 29, pp. 403-408 (2006).
[18] J. Song, D. S. Lee, J. S. Kwak, O. H. Nam, Y. Park and T. Y. Seong, “Low resistance and reflective Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes”, IEEE Photon. Technol. Lett., Vol. 16, pp. 1450-1452 (2004).
[19] C.-H. Chao, S. L. Chuang and T.-L. Wu, “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals”, Appl. Phys. Lett., Vol. 89, pp. 091-116 (2006).
[20] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes”, IEEE Electron Device Lett., Vol. 24, pp. 129–131 (2003).
[21] G. Meneghesso, S. Podda and M. Vanzi, “Investigation on ESD-stressed GaN/InGaN-on-sapphire blue LEDs”, Microelectron. Reliab., Vol. 41, pp. 1609–1614 (2001).
[22] Y. K. Su, S. J. Chang, S. C. Wei, S. M. Chen and W. L. Li, “ESD engineering of nitride-based LEDs”, IEEE Trans. Device Mater. Rel., Vol. 5, pp. 277–281 (2005).
[23] W. S. Chen, S. C. Shei, S. J. Chang, Y. K. Su, W. C. Lai, C. H. Kuo, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, and C. F. Shen, “Rapid thermal annealed InGaN/GaN flip-chip LEDs”, IEEE Tran. Electron. Dev., Vol. 53, pp. 32-37 (2006).
[24] S. J. Chang, W. S. Chen, S. C. Shei, T. K. Ko, C. F. Shen, Y. P. Hsu, C. S. Chang, J. M. Tsai, W. C. Lai, and A. J. Lin, “Highly reliable high-brightness GaN-based flip chip LEDs”, IEEE Tran. Adv. Packaging, Vol. 30, pp. 752-757 (2007).
[25] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, “Nitride-based flip-chip ITO LEDs”, IEEE Tran. Adv. Packaging, Vol. 28, pp. 273-277 (2005).
[26] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang, and Y. K. Su, “White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer”, IEEE Photon. Technol. Lett., Vol. 14, pp. 450-452 (2002).
[27] H. Morkoc, “Nitride Semiconductors and Devices”, pp. 168 (Springer, 1999).
[28] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, and J. K. Sheu, “High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE Trans Electron. Dev., Vol. 50, pp. 2208-2212 (2003).
[29] C. S. Chang, S. J. Chang, Y. K. Su, Y. Z. Chiou, Y. C. Lin, Y. P. Hsu, S. C. Shei, H. M. Lo, J. C. Kei, S. C. Chen, and C. H. Liu, “InGaN/GaN light emitting diodes with rapid thermal annealed Ni/ITO p-contacts”, Jpn. J. Appl. Phys., Vol. 42, pp. 3324–3327 (2003).
[30] C. Y. Hu, Z. X. Qin, Z. Z. Chen, Z. J. Yang, T. J. Yu, X. D. Hu, K. Wu, Q. J. Jia, H. H. Wang, and G. Y. Zhang, “Influence of various annealing temperatures on microstructure evolution of oxidized Ni/Au ohmic contact to p-GaN studied by synchrotron X-ray diffraction”, J. Crystal Growth, Vol. 285, pp. 333–338 (2005).
[31] C. Y. Hu, Z. X. Qin, Z. Z. Chen, H. Yang, K.Wu, Q.Wang, Z. J. Yang, T. J. Yu, X. D. Hu, and G. Y. Zhang, “Microstructure evolution of oxidized Ni/Au ohmic contacts to p-GaN studied by x-ray diffraction”, Mater. Sci. Semicond. Proc., Vol. 8, pp. 515–519 (2005).
[32] H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN”, Appl. Phys. Lett., Vol. 85, pp. 5920–5922 (2004).
[33] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., Vol. 84, pp. 855-857 (2004).
[34] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by micro roughening of the p-GaN surface”, J. Appl. Phys., Vol. 93, pp. 9383-9385 (2003).
[35] C. C. Yang, R. H. Horng, C. E. Lee, W. Y. Lin, K. F. Pan, Y. Y. Su, and D. S. Wuu, “Improvement in extraction efficiency of GaN-based light-emitting diodes with textured surface layer by natural lithography”, Jpn. J. Appl. Phys., Vol. 44, pp. 2525-2507 (2005).
[36] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “Nitride-based LEDs with 800oC-grown p-AlInGaN/GaN double cap layers”, IEEE Photon. Technol. Lett., Vol. 16, pp. 1447-1449 (2004).
[37] C. E. Lee, H. C. Kuo, Y. C. Lee, M. R. Tsai, T. C. Lu, S. C. Wang, and C. T. Kuo, “Luminance enhancement of flip-chip light-emitting diodes by geometric sapphire shaping structure”, IEEE Photon. Technol. Lett., Vol. 20, pp. 184-186 (2008).
[38] D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, “Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side-surface of sapphire substrate”, IEEE Photon. Technol. Lett., Vol. 18, pp. 1406-1408 (2006).
[39] C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo and S. C. Shei, “Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate”, IEEE Photon. Technol. Lett., Vol. 19, pp. 780-782 (2007).
[40] S. H. Huang, R. H. Horng, K. S. Wen, Y. F. Lin, K. W. Yen and D. S. Wuu, “Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing”, IEEE Photon. Technol. Lett., Vol. 18, pp. 2623-2625 (2006).
[41] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography”, Appl. Phys. Lett., Vol. 86, Art. No. 221101 (2005).
[42] A. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. P. Zhang, M. A. Khan, A. Sarua, and M. Kuball, “Self-heating effects at high pump currents in deep ultraviolet lightemitting diodes at 324 nm”, Appl. Phys. Lett., Vol. 81, pp. 3491–3493 (2002).
[43] M. Koike, N. Shibata, H. Kato, and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications”, IEEE J. Sel. Topics Quantum Electron., Vol. 8, pp. 271–277 (2002).
[44] J. R. Lee, S. L. Na, J. H. Jeong, S. N. Lee, J. S. Jang, S. H. Lee, J. J. Jung, J. O. Song, T. Y. Seong, and S. J. Park, “Low resistance and high reflectance Pt/Rh contacts to p-type GaN for GaN-based flip chip light-emitting diodes”, J. Electrochem. Soc., Vol. 152, pp.G92–G94 (2005).
[45] J. Song, D. S. Lee, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong, “Low resistance and reflective Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes”, IEEE Photon. Technol. Lett., Vol. 16, pp. 1450–1452 (2004).
[46] J. C. Bha, A. Kim, D. Collins, R. Fletcher, R. Khare, and S. Rudaz, “High efficiency monochromatic and white InGaN flip-chip dice”, Institute Phys. Conf. Series, Vol. 170, pp. 243–248 (2002).
[47] J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN”, Appl. Phys. Lett., Vol. 86 (2005).
[48] C. S. Chang, S. J. Chang, Y. K. Su, W. S. Chen, C. Fu. Shen, S. C. Shei, and H. M. Lo, “Nitride-based power chip with indium-tin-oxide p-contact and Al back-side reflector”, Jpn. J. Appl. Phys., Vol.44, pp. 2462-2464 (2005).
[49] G. W. C. Kaye and T. H. Laby, in Tables of physical and chemical constants (Longman, London, UK, 1993).
[50] Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method”, Appl. Phys. Lett., Vol. 85, pp. 2163-2165 (2004).
[51] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, C. M. Wang and B. R. Huang, “Nitride-based LEDs with p-InGaN capping layer”, IEEE Tran. Electron. Dev., Vol. 50, pp. 2567-2570 (2003).
[52] S. J. Chang, W. S. Chen, S. C. Shei, C. F. Shen, C. T. Kuo, T. K. Ko, J. M. Tsai, W. C. Lai, J. K. Sheu and A. J. Lin, “High-brightness InGaN/GaN power flip-chip LEDs”, submitted to IEEE/OSA J. Lightwave Technol. (2008) (accepted)
[53] T. Inoue, “Light-emitting devices”, Japanese Patent H11-040848 (1999). (in Japanese).
[54] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes”, IEEE Electron Device Lett., Vol. 24, no. 3, pp. 129–131 (2003).
[55] G. Meneghesso, S. Podda, and M. Vanzi, “Investigation on ESD-stressed GaN/InGaN-on-sapphire blue LEDs”, Microelectron. Reliab., Vol. 41, pp. 1609–1614 (2001).
[56] Y. K. Su, S. J. Chang, S. C. Wei, S. M. Chen, and W. L. Li, “ESD engineering of nitride-based LEDs”, IEEE Trans. Device Mater. Rel., Vol. 5, pp. 277–281 (2005).
[57] J. J. Horng, Y. K. Su, S. J. Chang, W. S. Chen, and S. C. Shei, “GaN-Based Power LEDs With CMOS ESD Protection Circuits”, IEEE Tran. Device and Materials Reliability, Vol. 7, pp. 340-346 (2007).
[58] S. J. Chang, C. F. Shen, S. C. Shei, R. W. Chuang, C. S. Chang, W. S. Chen, T. K. Ko, and J. K. Sheu, “Highly Reliable Nitride-Based LEDs With Internal ESD Protection Diodes”, IEEE Tran. Device and Materials Reliability, Vol. 6, pp. 442-447 (2006).