| 研究生: |
鄭鈞元 Cheng, Chun-Yuan |
|---|---|
| 論文名稱: |
有機異質接面太陽能電池製作與標準量測之研究 The study, fabrication, and measurement of polymer bulk-heterojunction solar cell |
| 指導教授: |
郭宗枋
Guo, Tzung-fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | PEO 、高分子 、異質接面 、太陽能電池 |
| 外文關鍵詞: | polymer, PEO, solar cell, buck-heterojunction |
| 相關次數: | 點閱:70 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本碩士論文之中,為了準確的得到元件效率我們確立了實驗室的I-V (Current-Voltage)量測與光源校正方法,並且我們藉由IPCE (Incident Photon to Charge Carrier Efficiency)系統的架設與元件量測探討有機高分子太陽能電池的工作波段和各波段的轉換效率。
接著透過改變不同的電極材料去討論電極對元件的開路電壓(VOC)、短路電流(ISC)及效率的影響。其中使用poly (ethylene oxide) (PEO)當作電極材料蒸鍍上Al之後對效率有所提升,其轉換效率是3.5%。由X-ray Photo-electron Spectroscopy (XPS)量測發現PEO和Al之間有鍵結反應,使介面發生反應,透過Ultraviolet photoemission spectroscopy (UPS)的量測發現PEO/Al的功函數(work function)很低,使電極和主動層介面形成歐姆接觸,不會有能障造成VOC的下降,使效率提升。
在改變電極之後,我們希望透過donor和accepter的介面改善增加元件效率,我們的做法在P3HT的膜上蒸鍍上C60,再利用熱擴散的方法讓C60滲透到P3HT裡面,增加donor和acceptor接觸面積,提高電子、電洞分離的效率。
In order to get correct efficiency data, we established the correct methods for I-V (Current-Voltage) measurement, and we set up the IPCE (Incident Photon to Charge Carrier Efficiency) system to measure the resposivity of our devices.
By changing different materials cathodes, we discussed how the cathodes influences the open circuit voltage (VOC), short circuit current (ISC) and conversion efficiency (η). Using the poly (ethylene oxide) (PEO) cathode improved the efficiency of our device to 3.5%. By X-ray Photo-electron Spectroscopy (XPS) measurement, we saw formation of C-Al between PEO and the deposited Al. By Ultraviolet photoemission spectroscopy (UPS) measurement, we found the work function of PEO/Al was low, it created a ohmic contact between active layer and cathode, there was no barrier height to decrease VOC, and the efficiency of devices can be improved.
On the other hand, we got a idea to increase the conversion efficiency by improving the interface of donor and acceptor. We evaporated C60 on the P3HT film and use thermodiffusion to make C60 diffuse into P3HT. By this way, we could increase the donor and acceptor interface area and improve electrons-holes pair separation.
1. A. Raval, V. Ramanathan, “Observational determination of the green house Effect” ,Nature, 342, 758 (1989)
2. M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost”, Progress In Photolvoltaics: Research And Application, 9, 123, (2001)
3. M. A. Green, “Photovoltaics: coming of age”, Photovoltaic Specialists Conference, 1, 1 (1990)
4. D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, 25, 676 (1954)
5. T. M. Razykov, “Photovoltaic solar electricity: State of the art and future prospects”, Electrical Machines and Systems, 1, 297 (2003)
6. B. O’Regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737 (1991)
7. V. Y. Merritt, H. J. Hovel, “Organic solar cells of hydroxy squarylium”, Applied Physics Letters, 29, 414 (1976)
8. C. W. Tang, “Two layers photovoltaic cell”, Applied Physics Letters, 48, 183 (1986)
9. P. Peumans, S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Applied Physics Letters, 79, 126 (2001)
10. H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerence”, Nature, 318, 162 (1985)
11. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, 258,1474 (1992)
12. G. Yu, K. Pakbaz, A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity”, Applied Physics Letters, 64, 3422 (1994)
13. G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science, 270, 1789 (1995)
14. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, ”2.5%efficient organic plastic solar cell”, Applied Physics Letters, 78, 841 (2001)
15. F. Padinger, R. S. Rittberger, N.S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Advanced Functional Materials, 13, 85 (2003)
16. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials, 4, 864 (2005)
17. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficiency polymer solar cells with nanoscale control of the interpenetrating network morphology”, Advanced Functional Materials, 15, 1617 (2005)
18. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, “Design rules for donors in bulk heterojunction solar cells-Towards 10% energy conversion efficiency”, Advanced Materials, 18, 789 (2006)
19. L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells”, Applied Physics Letters, 88, 093511 (2006)
20. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “Accurate measurement and characterization of organic solar cells”, Advanced Functional Materials, 16, 2016 (2006)
21. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, “Device physics of polymer:fullerene bulk heterojunction solar cells”, Advanced Material, 19, 1551 (2007)
22. G. Li, V. Shrotriya, Y. Yao, J. Huanga Y. Yang, “Manipulating regioregular poly(3-hexylthiophene) : [6,6]-phenyl-C61-butyric acid methyl ester blends—route towards high efficiency polymer solar cells”, Journal of Materials Chemistry, 17, 3126 (2007)
23. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, "High-performance polymer light-emitting diodes utilizing modified Al cathode", Applied Physics Letters, 87, 013504 (2005)
24. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, C. T. Chung, “Organic oxide/Al composite cathode in efficient polymer light-emitting diodes”, Applied Physics Letters, 88, 113501 (2006)
25. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices”, Journal of Applied Physics, 86, 1688 (1999)
26. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene”, Applied Physics Letters, 86, 063502 (2005)
27. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “Solvent annealing effect in polymer solar cells basedon Poly(3-hexylthiophene) and methanofullerenes”, Advanced Functional Material, 17, 1636–1644 (2007)
28. Model SR510 Lock-in amplifier, Stanford Research Systems, Inc
29. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells”, Advanced Functional Material, 11, 374 (2001)
30. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, Journal of Applied Physics, 94, 6849 (2003)
31. V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, “Effect of metal electrodes on the performance of polymer: fullerene bulk heterojunction solar cells”, Applied Physics Letters, 85, 970 (2004)
32. J. Xue , B. P. Rand, S. Uchida, S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell”, Advanced Materials, 17, 66 (2005)
33. P. Peumans, A. Yakimov, S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, Journal of Applied Physics, 93, 3693 (2003)
34. F. M. Alessandro, S. Marazzitaa, D. Frascarob, L. Settib, “Influence of a non-ionic surfactant on the UV–vis absorption features of regioregular head-to-tail poly(3-hexylthiophene) in water-based dispersions”, Synthetic Metals, 147, 149 (2004)
35. A. Geiser, B. Fan, H. Benmansour, F. Castro, J. Heier, B. Keller, K. E. Mayerhofer, F. Nüesch , R. Hany, “Poly(3-hexylthiophene)/C60 heterojunction solar cells: Implication of morphology on performance and ambipolar charge collection”, Solar Energy Materials & Solar Cells, 92, 464 (2008)
36. C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications”, Journal of Applied Physics, 99, 104503 (2006)
37. C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells”, Applied Physics Letters, 80, 18 (2002)
38. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode”, Journal of Applied Physics, 84, 4 (1998)
39. Fengling Zhang, Mikael Ceder, and Olle Inganäs,” Enhancing the Photovoltage of Polymer Solar Cells by Using a Modified Cathode”, Advanced Materials, 19, 1835 (2007)