簡易檢索 / 詳目顯示

研究生: 鄭鈞元
Cheng, Chun-Yuan
論文名稱: 有機異質接面太陽能電池製作與標準量測之研究
The study, fabrication, and measurement of polymer bulk-heterojunction solar cell
指導教授: 郭宗枋
Guo, Tzung-fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 103
中文關鍵詞: PEO高分子異質接面太陽能電池
外文關鍵詞: polymer, PEO, solar cell, buck-heterojunction
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本碩士論文之中,為了準確的得到元件效率我們確立了實驗室的I-V (Current-Voltage)量測與光源校正方法,並且我們藉由IPCE (Incident Photon to Charge Carrier Efficiency)系統的架設與元件量測探討有機高分子太陽能電池的工作波段和各波段的轉換效率。
    接著透過改變不同的電極材料去討論電極對元件的開路電壓(VOC)、短路電流(ISC)及效率的影響。其中使用poly (ethylene oxide) (PEO)當作電極材料蒸鍍上Al之後對效率有所提升,其轉換效率是3.5%。由X-ray Photo-electron Spectroscopy (XPS)量測發現PEO和Al之間有鍵結反應,使介面發生反應,透過Ultraviolet photoemission spectroscopy (UPS)的量測發現PEO/Al的功函數(work function)很低,使電極和主動層介面形成歐姆接觸,不會有能障造成VOC的下降,使效率提升。
    在改變電極之後,我們希望透過donor和accepter的介面改善增加元件效率,我們的做法在P3HT的膜上蒸鍍上C60,再利用熱擴散的方法讓C60滲透到P3HT裡面,增加donor和acceptor接觸面積,提高電子、電洞分離的效率。

    In order to get correct efficiency data, we established the correct methods for I-V (Current-Voltage) measurement, and we set up the IPCE (Incident Photon to Charge Carrier Efficiency) system to measure the resposivity of our devices.
    By changing different materials cathodes, we discussed how the cathodes influences the open circuit voltage (VOC), short circuit current (ISC) and conversion efficiency (η). Using the poly (ethylene oxide) (PEO) cathode improved the efficiency of our device to 3.5%. By X-ray Photo-electron Spectroscopy (XPS) measurement, we saw formation of C-Al between PEO and the deposited Al. By Ultraviolet photoemission spectroscopy (UPS) measurement, we found the work function of PEO/Al was low, it created a ohmic contact between active layer and cathode, there was no barrier height to decrease VOC, and the efficiency of devices can be improved.
    On the other hand, we got a idea to increase the conversion efficiency by improving the interface of donor and acceptor. We evaporated C60 on the P3HT film and use thermodiffusion to make C60 diffuse into P3HT. By this way, we could increase the donor and acceptor interface area and improve electrons-holes pair separation.

    中文摘要............................................................................................................I 英文摘要..........................................................................................................II 誌謝.................................................................................................................III 目錄.................................................................................................................IV 表目錄...........................................................................................................VII 圖目錄...........................................................................................................VII 第一章 緒論...................................................................................................1 1-1 前言..................................................................................................1 1-2 太陽能電池簡介..............................................................................2 1-2-1 無機太陽能電池..................................................................2 1-2-2 有機太陽能電池..................................................................5 1-3 太陽能電池原理簡介....................................................................11 1-3-1 無機太陽能電池工作原理................................................11 1-3-2 有機太陽能電池工作原理................................................15 1-4 標準量測條件................................................................................18 1-4-1 太陽光譜與標準量測光源定義........................................18 1-4-2 IV量測.................................................................................20 1-4-3 IPCE量測............................................................................28 1-5 研究動機與大綱............................................................................29 第二章 實驗步驟.........................................................................................31 2-1 實驗流程簡介................................................................................31 2-2 元件製作........................................................................................32 2-2-1 ITO基板圖案蝕刻..............................................................32 2-2-2 ITO基板清洗......................................................................34 2-2-3 電洞傳輸層........................................................................34 2-2-4 主動層成膜........................................................................35 2-2-5 電極蒸鍍............................................................................36 2-3 元件量測........................................................................................39 2-3-1 I-V量測...............................................................................39 2-3-2 IPCE量測............................................................................40 2-4 P3HT:PCBM標準元件製作及表現.............................................41 第三章 IPCE系統架設與元件量測...........................................................43 3-1 IPCE系統架設...............................................................................43 3-2 IPCE量測.......................................................................................45 3-2-1 IPCE量測流程....................................................................45 3-2-2 Lock-in amplifier 的作用和原理介紹...............................46 3-2-3校正及量測方法..................................................................49 3-2-4 P3HT:PCBM標準元件量測結果......................................50 3-3 本章結論........................................................................................51 第四章 有機高分子太陽能電池與有機奈米薄膜層電極之研究.............52 4-1 電極對元件的影響........................................................................52 4-2 不同電極元件的結果與比較........................................................56 4-3 PEO和Al的厚度對元件的影響....................................................64 4-4 有機奈米層電極之研究與探討....................................................70 4-4-1 PEO/Al介面分析................................................................70 4-4-2 PEO/Al介面的功函數討論................................................74 4-5 本節结論........................................................................................75 第五章 熱擴散作用對異質接合太陽能電池之影響.................................76 5-1 雙層異質接合元件簡介................................................................76 5-2 P3HT/C60異質接合元件製作........................................................78 5-3 溫度條件對元件的影響................................................................79 5-4 本節结論........................................................................................84 第六章 總結與未來展望.............................................................................85 參考文獻.......................................................................................................86 自述...............................................................................................................91 表目錄 表 1-1 不同reference cell得到的mismatch factor.....................................27 表 2-1 Ca/Al元件各項參數......................................................................42 表 4-1 不同陰極材料元件的各項參數表..................................................57 表 4-2 不同厚度PEO/ Al(1000Å)元件的各項參數表現..........................66 表 4-3 PEO(45Å)/不同厚度Al元件的各項參數表現...............................68 表 4-4 XPS數值分析表 (波峰能量(eV)與相對面積百分比%)...............74 表 5-1 雙層元件製作annealing 120℃和不同熱擴散溫度的表現...........82 表 5-2 雙層元件製作不annealing 120℃和不同熱擴散溫度的表現.......83 圖目錄 圖 1-1 太陽能電池成本與效率趨勢圖........................................................2 圖 1-2 DSSC工作原理示意圖......................................................................7 圖 1-3 Donor/Acceptor異質接面 (heterojunction) 元件結構圖................8 圖 1-4 光伏效應示意圖..............................................................................11 圖 1-5 理想太陽能電池等效電路圖..........................................................12 圖 1-6 實際太陽能電池等效電路圖..........................................................13 圖 1-7 實際太陽能電池電流-電壓特性曲線圖........................................15 圖 1-8 雙層有機太陽能電池工作原理示意圖..........................................17 圖 1-9 Bulk heterojunction太陽能電池工作原理示意圖..........................17 圖 1-10 Air mass示意圖..............................................................................19 圖 1-11 太陽光譜圖....................................................................................19 圖 1-12 Test cell的光譜響應.......................................................................25 圖 1-13 Reference cell的光譜響應.............................................................26 圖 1-14 Reference spectral irradiance和source spectral irradiance的 AM1.5G光譜圖..............................................................................26 圖 1-15 燈泡壽命對mismatch factor關係圖.............................................27 圖 2-1 使用的光罩圖和切割完的元件基板..............................................37 圖 2-2 舊光罩圖和切割完的元件基板......................................................37 圖 2-3 電極和新舊元件位置比較圖..........................................................37 圖 2-4 PEDOT和PSS的分子式..................................................................38 圖 2-5 (a)rr-P3HT、(b)PCBM和(c)1,2-Dichlorobenzene的化學結構 式.......................................................................................................38 圖 2-6 Ca/Al元件J-V曲線圖(a)照光(b)照光和暗室電流取log...............42 圖 3-1 IPCE架設圖.....................................................................................44 圖 3-2 Lock-in amplifier的介面何操作示意圖..........................................48 圖 3-3 Lock-in amplifier等效電路圖圖......................................................48 圖 3-4 各波長入射光強度..........................................................................49 圖 3-5 Newport PD 71638的Response和IPCE..........................................50 圖 3-6 Newport PD 71638的IPCE量測值和理論值.................................50 圖 3-7 量測和文獻P3HT:PCBM的IPCE圖............................................51 圖 4-1 (a)VOC示意圖,(b)(c) band bending 示意圖, (d)電壓的損耗..........55 圖 4-2 poly(ethylene oxide) (PEO)結構式..................................................56 圖 4-3 Al的IV曲線(a)照光(b)照光和暗室電流取log..............................58 圖 4-4 Ca/Al和LiF/Al的IV曲線(a)照光(b)照光和暗室電流取log.........59 圖 4-5 PEO/Al的IV曲線(a)照光(b)照光和暗室電流取log.....................61 圖 4-6 PEO/Ca/Al的IV曲線(a)照光(b)照光和暗室電流取log................62 圖 4-7 LiF/PEO/Al的IV曲線(a)照光(b)照光和暗室電流取log...............63 圖 4-8 不同厚度PEO/ Al(1000Å)元件I-V曲線(a)照光(b)照光和暗室電 流取log...........................................................................................65 圖 4-9 各項元件參數對PEO厚度關係圖(a)VOC、JSC(b)FF、η..................66 圖 4-10 PEO(45Å)/不同厚度Al元件I-V曲線(a)照光(b)照光和暗室電流 取log...............................................................................................68 圖 4-11 各項元件參數對Al厚度關係圖(a)VOC、JSC(b)FF、η....................69 圖 4-12 (a) P3HT:PCBM (未沉積) XPS分析圖........................................71 圖 4-12 (b) 沉積 Al (50Å) XPS分析圖.....................................................72 圖 4-12 (c) 沉積 PEO (45Å) XPS分析圖.................................................73 圖 4-12 (d) 沉積 PEO (45Å)/ Al (10Å) XPS分析圖.................................73 圖 4-12 (e) 沉積 PEO (45Å)/ Al (50Å) XPS分析圖.................................73 圖 4-13 PEO/Al的UPS圖...........................................................................75 圖 5-1 Bulk heterojunction主動層示意圖..................................................77 圖 5-2 交錯介面示意圖..............................................................................77 圖 5-3 P3HT/C60雙層結構圖.....................................................................78 圖 5-4 雙層元件製作annealing 120℃和不同熱擴散溫度I-V曲線(a)照光 (b)照光和暗室電流取log...............................................................81 圖 5-5 雙層元件製作不annealing和不同熱擴散溫度I-V曲線(a)照光(b) 照光和暗室電流取log...................................................................83 圖 5-6 慢成長P3HT膜和120℃annealing的P3HT膜的UV-可見光吸收 光譜.................................................................................................84

    1. A. Raval, V. Ramanathan, “Observational determination of the green house Effect” ,Nature, 342, 758 (1989)
    2. M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost”, Progress In Photolvoltaics: Research And Application, 9, 123, (2001)
    3. M. A. Green, “Photovoltaics: coming of age”, Photovoltaic Specialists Conference, 1, 1 (1990)
    4. D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, 25, 676 (1954)
    5. T. M. Razykov, “Photovoltaic solar electricity: State of the art and future prospects”, Electrical Machines and Systems, 1, 297 (2003)
    6. B. O’Regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737 (1991)
    7. V. Y. Merritt, H. J. Hovel, “Organic solar cells of hydroxy squarylium”, Applied Physics Letters, 29, 414 (1976)
    8. C. W. Tang, “Two layers photovoltaic cell”, Applied Physics Letters, 48, 183 (1986)
    9. P. Peumans, S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Applied Physics Letters, 79, 126 (2001)
    10. H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerence”, Nature, 318, 162 (1985)
    11. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, 258,1474 (1992)
    12. G. Yu, K. Pakbaz, A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity”, Applied Physics Letters, 64, 3422 (1994)
    13. G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science, 270, 1789 (1995)
    14. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, ”2.5%efficient organic plastic solar cell”, Applied Physics Letters, 78, 841 (2001)
    15. F. Padinger, R. S. Rittberger, N.S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Advanced Functional Materials, 13, 85 (2003)
    16. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials, 4, 864 (2005)
    17. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficiency polymer solar cells with nanoscale control of the interpenetrating network morphology”, Advanced Functional Materials, 15, 1617 (2005)
    18. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, “Design rules for donors in bulk heterojunction solar cells-Towards 10% energy conversion efficiency”, Advanced Materials, 18, 789 (2006)
    19. L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells”, Applied Physics Letters, 88, 093511 (2006)
    20. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “Accurate measurement and characterization of organic solar cells”, Advanced Functional Materials, 16, 2016 (2006)
    21. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, “Device physics of polymer:fullerene bulk heterojunction solar cells”, Advanced Material, 19, 1551 (2007)
    22. G. Li, V. Shrotriya, Y. Yao, J. Huanga Y. Yang, “Manipulating regioregular poly(3-hexylthiophene) : [6,6]-phenyl-C61-butyric acid methyl ester blends—route towards high efficiency polymer solar cells”, Journal of Materials Chemistry, 17, 3126 (2007)
    23. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, "High-performance polymer light-emitting diodes utilizing modified Al cathode", Applied Physics Letters, 87, 013504 (2005)
    24. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, C. T. Chung, “Organic oxide/Al composite cathode in efficient polymer light-emitting diodes”, Applied Physics Letters, 88, 113501 (2006)
    25. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices”, Journal of Applied Physics, 86, 1688 (1999)
    26. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene”, Applied Physics Letters, 86, 063502 (2005)
    27. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “Solvent annealing effect in polymer solar cells basedon Poly(3-hexylthiophene) and methanofullerenes”, Advanced Functional Material, 17, 1636–1644 (2007)
    28. Model SR510 Lock-in amplifier, Stanford Research Systems, Inc
    29. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells”, Advanced Functional Material, 11, 374 (2001)
    30. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, Journal of Applied Physics, 94, 6849 (2003)
    31. V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, “Effect of metal electrodes on the performance of polymer: fullerene bulk heterojunction solar cells”, Applied Physics Letters, 85, 970 (2004)
    32. J. Xue , B. P. Rand, S. Uchida, S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell”, Advanced Materials, 17, 66 (2005)
    33. P. Peumans, A. Yakimov, S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, Journal of Applied Physics, 93, 3693 (2003)
    34. F. M. Alessandro, S. Marazzitaa, D. Frascarob, L. Settib, “Influence of a non-ionic surfactant on the UV–vis absorption features of regioregular head-to-tail poly(3-hexylthiophene) in water-based dispersions”, Synthetic Metals, 147, 149 (2004)
    35. A. Geiser, B. Fan, H. Benmansour, F. Castro, J. Heier, B. Keller, K. E. Mayerhofer, F. Nüesch , R. Hany, “Poly(3-hexylthiophene)/C60 heterojunction solar cells: Implication of morphology on performance and ambipolar charge collection”, Solar Energy Materials & Solar Cells, 92, 464 (2008)
    36. C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications”, Journal of Applied Physics, 99, 104503 (2006)
    37. C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells”, Applied Physics Letters, 80, 18 (2002)
    38. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode”, Journal of Applied Physics, 84, 4 (1998)
    39. Fengling Zhang, Mikael Ceder, and Olle Inganäs,” Enhancing the Photovoltage of Polymer Solar Cells by Using a Modified Cathode”, Advanced Materials, 19, 1835 (2007)

    下載圖示 校內:2011-08-01公開
    校外:2013-08-01公開
    QR CODE