簡易檢索 / 詳目顯示

研究生: 龔鈺鈞
Kung, Yu-Chun
論文名稱: 鋼筋混凝土板受縮尺彈頭撞擊之數值分析
Numerical Analysis of Reinforced Concrete Slabs under Scaled-warhead Impact
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 蔡營寬
Tsai, Ying-Kuan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 101
中文關鍵詞: LS-DYNA混凝土材料模型動態破壞縮尺彈頭撞擊試驗
外文關鍵詞: LS-DYNA, Concrete material model, Dynamic failure, Scaled war-head impact test
相關次數: 點閱:95下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了鋼筋混凝土版受縮尺彈頭撞擊的數值分析,並結合了Hanchak實驗的相關成果。主要目的是使用 LS-DYNA 軟體模擬縮尺彈頭撞擊試驗機對鋼筋混凝土版的動態破壞行為。通過模擬建築物受到子彈威脅的情境,研究彈體速度變化對結構損壞模式的影響,並評估在高動態下使用 LS-DYNA 混凝土模型的有效性和準確性。
    研究方法主要包括經驗公式法及數值分析法。其中,數值模擬分析在工程領域中扮演著重要角色。透過LS-DYNA軟體,模擬彈體撞擊鋼筋混凝土版的動態行為,通過數值模型預測和理論值比較,評估結構物抗貫穿能力,並提供混凝土材料在這方面的應用與參考。
    為了驗證數值模擬的準確性,本文參考了Hanchak等人的實驗數據。Hanchak實驗是研究混凝土版在高速彈體撞擊下行為的重要實驗之一,提供了大量的實驗數據和現象觀察,對於數值模擬結果的驗證和校正具有重要意義。
    結果顯示,彈體速度變化對鋼筋混凝土版的損壞模式有顯著影響。不同抗壓強度的混凝土在受到撞擊後,貫穿深度和殘餘速度有所不同。研究還發現,使用 LS-DYNA 模擬高動態撞擊試驗具有較高的準確性,能夠有效預測混凝土版的破壞行為。數值模擬結果與Hanchak實驗數據的對比分析表明,兩者在貫穿後殘餘速度方面具有良好的一致性。
    本文的結論是,通過建立一個完整的數值模型和研究流程,可以有效評估和預測混凝土結構在極端環境下的性能。這對於未來混凝土建築物的設計和建造具有重要的參考價值,有助於開發出更具抗震、抗爆和抗衝擊性能的新型混凝土材料,提高建築物在極端環境下的安全性和可靠性。

    This study investigates the numerical analysis of reinforced concrete slabs impacted by scaled projectiles, incorporating findings from the Hanchak experiment. The primary objective is to use LS-DYNA software to simulate the dynamic failure behavior of reinforced concrete slabs under projectile impact. By simulating scenarios where buildings face bullet threats, the study examines how variations in projectile velocity influence structural damage patterns and evaluates the effectiveness and accuracy of the LS-DYNA concrete model under high dynamic conditions.
    Results indicate that changes in projectile velocity significantly affect damage patterns in reinforced concrete slabs. Different compressive strengths result in varying penetration depths and residual velocities. The study also finds that LS-DYNA simulations accurately predict the failure behavior of concrete slabs, with numerical results closely matching Hanchak's experimental data.
    In conclusion, the study demonstrates that a comprehensive numerical model can effectively evaluate and predict the performance of concrete structures under extreme conditions. This is valuable for designing future concrete buildings, developing new materials with improved resistance to seismic, explosive, and impact forces, and enhancing building safety and reliability in extreme environments.

    摘要ii 誌謝v 目錄vi 圖目錄ix 表目錄xi 第一章緒論1 1.1研究背景與動機1 1.2研究目的2 1.3研究方法2 1.4研究流程與架構3 第二章文獻回顧5 2.1概述5 2.2經驗公式法5 2.2.1撞擊實驗研究5 2.2.2經驗公式研究6 2.3數值分析法12 第三章數值模擬方法15 3.1有限元素法15 3.2LS-DYNA概述16 3.3網格模擬方式17 3.3.1網格描述法17 3.3.2模型元素類型18 3.3.3模型網格尺寸19 3.4材料數值模型與相關設定21 3.4.1混凝土材料模型21 3.4.2鋼筋材料模型26 3.4.3彈體與底座材料模型27 3.4.4材料元素侵蝕設定28 3.4.5狀態方程式28 3.5加載與接觸設定29 3.5.1加載設定29 3.5.2接觸設定29 3.5.3鋼筋與混凝土握裹設定32 3.6顯隱式分析與時間步長控制33 3.6.1顯式求解33 3.6.2隱式求解33 3.6.3時間步長控制33 3.7數值模型影響參數探討34 第四章試驗與數值模擬結果驗證與分析35 4.1概述35 4.2Hanchak實驗模型驗證35 4.2.1實驗內容說明35 4.2.2研究模擬結果討論38 4.3縮尺彈頭撞擊試驗模擬結果討論48 4.3.1實驗內容構想48 4.3.2網格尺寸分析50 4.3.3一般速度加載模擬結果討論51 4.3.4超高速度加載模擬預測與分析56 4.4數值模型強度之探討60 4.4.1不同強度對經驗公式之討論60 4.4.2不同強度對模擬結果之比較63 第五章結論及建議85 5.1結論85 5.2建議86 參考文獻87

    [1]Hanchak, S. J., Forrestal, M. J., Young, E. R., and Ehrgott, J. Q., “Perforation of Concrete Slabs with 48MPa and 140MPa Unconfined CompressiveStrengths,” International Journal of Impact Engineering, Vol. 12, pp. 1-7,1992.
    [2]Unosson, M., “Penetration in Concrete for Projectiles with L/D=9,” Swedish Defence Research Agency Weapons and Protection SE-147 25 Tumba , June,2005.
    [3]Hansson, H., “Penetration in Concrete for Projectiles with L/D≈9,” Defence Research Agency Weapons and Protection SE-147 25 TUMBA SWEDISH, June, 2005.
    [4]Poncelet, J. V., “Cours de Mecanique Industrielle,” 1829.
    [5]NDRC, “Effects of Impact and Expansion National Defense Reserch Committee,” Vol.1, 1946.
    [6]Department of the Army, Fundamentals of protective design, Report AT120, Army Corps of Engineers, Office of the Chief of Engineers, 1946.
    [7]Young, C. W., “Penetration equations,” Contractor Report SAND97-2426, Sandia National Laboratories, 1997.
    [8]Department of The Army, “Fundamental of Protective Design for Conventional Weapons,” Technical Manual TM5-855-1, USA, Chap 6, 1998.
    [9]鄭丁興,軍事防爆震工程課程講義,國防大學理工學院,桃園,2013。
    [10]National Defense Research Committee, “Effects of Impact and Explosion, Summary Technical Report,” National Defense Research Committee, Washington, D. C., 1998.
    [11]趙海鷗,LS-DYNA動力分析指南,兵器工業出板社,北京,2003。
    [12]Taylor, L. M., Chen, E. P., and Kuszmaul, J. S., “Microcrack-Induced Damage Accumulation in Brittle Rock under Dynamic Loading,” Computer Methods Apply Mesh Engineer, Vol.55, pp. 301-320, 1986.
    [13]Chen, E. P., “Simulation of Concrete perforation Based on a Continuum Damage Model SAND94-0792C,” Sandia National Laboratories, New Mexico, U.S.A., January, 1994.
    [14]Huang, F., Wu, H., Jin, Q., and Zhang, Q., “A Numerical Simulation on the Perforation of Reinforced Concrete Targets,” International Journal of Impact Engineering, Vol.32, pp.173-187, 2005.
    [15]金乾坤,“混凝土動損傷與失效模型”,兵工學報,第二十七卷,第一期,第10-14頁,北京,2006。
    [16]Wang Z. L., Li Y. C., Shen R. F., and Wang J. G., “Numerical Study on Craters and Penetration of Concrete Slab by Ogive-nose Steel Projectile,” Computer and Geotechnics, Vol.34,pp. 1-9, 2007.
    [17]Holmquist, T. J., Johnson, G. R., and Cook, W. H., “A computational constitutive model for concrete subjected to large strain, high strain rates, and high pressures,”14th International Symposium on Ballistics, pp.591-600, 1995.
    [18]Beissel, S. R. and Johnson, G. R., “An abrasion algorithm for projectile mass loss during penetration,” International Journal of Impact Engineering, Vol.24, pp. 103-116, 2000.
    [19]Forrestal, M. J., Frew, D. J., Hanchak, S. J., and Brar, N. S., “Penetration of Grout and Concrete Targets with Ogive-nose Steel Projectiles,” International Journal of Impact Engineering, Vol.18, No.5, pp. 465-476, 1996.
    [20]蔡清裕、崔偉峰,“模擬剛性動能彈侵徹混凝土的FE-SPH方法”,國防科技大學學報,第二十五卷,第六期,第87-90頁,湖南長沙,2003。
    [21]宋明倫,“複合材料黏附於鋼筋混凝土板在不同載重率作用下之力學行為數值模擬”,碩士論文,中正理工學院,桃園,2005。
    [22]Tai, Y. S., “Numerical simulation:The dynamic behavior of reinforced concrete plates under normal impact,” Theoretical and Applied Fracture Mechanics, Vol.45, pp. 117-127, 2006.
    [23]韓麗、高世橋,“彈丸垂直貫穿混凝土靶的數值研究”,北京理工大學學報,第二十六卷,第十一期,第953-956頁,北京,2006。
    [24]Polanco-Loria M., Hopperstad O. S., and Borvik T., “Numerical Predictions of Ballistic Limits for Concrete Slabs using a Modified Version of the HJC Concrete Model,” International Journal of Impact Engineering, Vol.35, pp. 290-303, 2008.
    [25]劉士踐、李勝才,“動能彈垂直侵徹混凝土的實驗研究及其數值模擬”,四川建築,第三十卷,第一期,第224-226頁,河南,2010。
    [26]馬愛娥、黃鳳雷、李金柱、武海軍,“鋼筋混凝土抗貫穿數值模擬”,北京理工大學學報,第二十七卷,第二期,第103-107頁,北京,2007。
    [27]Wang, Z. L., Li, Y. C., Shen, R .F., and Wang, J. G., “Numerical Study on Craters and Penetration of Concrete Slab by Ogive-nose Steel Projectile,” Computers and Geotechnics, Vol.34, pp.1-9, 2007.
    [28]Liu Y., Huang F., and Ma A., “Numerical Simulations of Oblique Penetration into Reinforced Concrete Targets,” Computer and Mathematics with Applications, Vol.61, pp. 2168-2171, 2011.
    [29]Ma A. E. and Huang F. L., “Simulation of Non-Ideal Penetration into (Reinforced) Concrete,” Beijing Institute of Technology, Beijing, 2007.
    [30]Schwer, L. E. and Malvar, L. J., “Simplified Concrete Modeling with Mat Concrete Damage REL3,” LS-DYNA Anwenderforum, Bamberg , 2005.
    [31]林志謙,“大應變、高應變率及高壓下混凝土材料模型之數值研究”,碩士論文,國防大學理工學院,桃園,2008。
    [32]黃信潔,“純混凝土受投射體衝擊作用下之數值分析研究”,碩士論文,國防大學理工學院,桃園,2008。
    [33]劉橫直,“投射體貫入鋼筋混凝土板之數值模擬及空穴膨脹理論研究”,碩士論文,國防大學理工學院,桃園,2009。
    [34]Haufe, A., Weimar, K., & Göhner, U. "Advanced airbag simulation using fluid-structure-interaction and the eulerian method in LS-DYNA." Proceedings of the LS-DYNA Anwenderforum, 2004.
    [35]Livermore Software Technology Corporation. "LS-DYNA keyword user's manual R15." California: Livermore Software Technology Corporation, 2024.
    [36]Malvar, L. J., Crawford, J. E., Simons, D., & Wesevich, J.W. "A concrete material model for DYNA3D." Engineering Mechanics. ASCE, pp. 142-146, 1995.
    [37]Thai, D. K., & Nguyen, D. D. "Calibrating the K&C Material Model for Fiber Reinforced Concrete Structures.", Springer, Singapore, pp. 241-249, 2020.
    [38]Mardalizad, A., Manes, A., & Giglio, M. "An investigation in constitutive models for damage simulation of rock material.", Associazione Italiana Per L’analisi Delle Sollecitazioni No. 45 Convegno Nazionale, 2016.
    [39]Markovich, N., Kochavi, E., & Ben-Dor, G. "Calibration of a concrete damage material model in LS-Dyna for a wide range of concrete strengths." International Workshop on Structures Response to Impact and Blast (IWSRIB), 2009.
    [40]Hughes, T. J., Taylor, R. L., Sackman, J. L., Curnier, A., & Kanoknukulchai, W. "A finite element method for a class of contact-impact problems." Computer methods in applied mechanics and engineering, Vol. 8, No. 3, pp. 249-276, 1976.
    [41]Livermore Software Technology Corporation. "LS-DYNA keyword user's manual R12." California: Livermore Software Technology Corporation, 2020.
    [42]曹德青,“鋼筋混凝土數值模擬研究”,博士論文,北京理工大學,北京,2000。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE