簡易檢索 / 詳目顯示

研究生: 辛萊杰
Rajat Kumar Singh
論文名稱: 以第一原理計算研究Dy摻雜之Nd2Fe14B的磁性質
Study of magnetic properties of Dy doped Nd2Fe14B by First-principles calculations
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 101
外文關鍵詞: Magnetic anisotropy Energy, Curie temperature, First principal calculation
相關次數: 點閱:82下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Strong magnets are required not just for technological advancement but also for energy conservation. Nd-Fe-B magnets are the strongest permanent magnets, with a high maximum energy product, and are widely employed in a variety of applications, including high-performance computers, and hybrid automobiles, However, low coercivity and operating temperature, are the two drawbacks of Nd2Fe14B.magnets. In This work, we focus on increasing the magnetic anisotropy energy and operating temperature of Nd2Fe14B by substituting the Nd (Neodymium) with the rare earth element Dy (Dysprosium). The five models have been considered when (Dy = 0, 0.50, 1, 1.50, 2) and see the effect change in magnetic anisotropy energy and the curie temperature. In this work First principal calculation is used for the magnetic anisotropy energy as well as for the curie temperature. The results of this, are magnetic anisotropy energy maximum for model Nd0.50Dy1.50Fe14B and least for model Nd2Fe14B. The curie temperature of model Nd1.50Dy0.50Fe14}B was the maximum and the Nd2Fe14B model was the least.

    Abstract i Acknowledgement ii Contents iv List of Tables viii List of Figures xi 1 Introduction 1 1.1 Magnetic field 1 1.2 Magnetization 1 1.3 Magnetic Induction 2 1.4 Magnetic susceptibility and permeability 2 1.5 Coercivity 3 1.6 Hysteresis curve 4 1.7 Remanence 6 1.8 Energy product 7 1.9 Ferromagnetism 8 1.10 Permanent magnets 8 1.11 Development of hard magnetic materials 9 1.11.1 AlNiCo magnets 10 1.11.2 Hard ferrites 11 1.11.3 Neodymium magnets 11 1.11.4 Samarium–cobalt magnets 12 1.12 Magnetocrystalline anisotropy energy 12 2 Literature Review 14 2.1 Introduction to Nd2Fe14B 14 2.2 Crystal structure of N d2Fe14B 14 2.2.1 Crystallographic Position of all the Elements 15 2.3 Magnetic moment of Nd2F e14B .18 2.4 Magnetic anisotropy Energy 20 2.5 Curie Temperature of Sm2F e14B and N d2F e14B 22 3 Basic Theory of Simulation 26 3.1 First Principal calculation 26 3.2 Density Functional Theory 27 3.3 Spin Density Functional Theory 28 3.3.1 The main body Schrodinger Hamiltonian 28 3.3.2 Born-oppenheimer Approxiamtions 29 3.4 Non-collinear magnetism 30 3.4.1 Spin-Polarized Kohn-sham equation 30 3.4.2 Collinear magnetism 32 3.4.3 Exchange correlation Function 33 3.5 Pseudo-potentials 35 3.6 Periodic boundary 36 3.7 VASP 36 4 Physical model and Simulation Design 39 4.1 Doping model Strategy 39 4.2 Periodic boundary condition when doping Dy in N d2F e14B 41 4.2.1 Doping of Dy ( X = 0 ) in [N d2−XDyX]F e14B 42 4.2.2 Doping of Dy (X = 0.50 ) in [N d2−XDyX]F e14B 43 4.2.3 Doping of Dy ( X = 1 ) in [N d2−XDyX]F e14B 45 4.2.4 Doping of Dy (X = 1.50) in [N d2−XDyX]F e14B 48 4.2.5 Doping of Dy ( X = 2 )in [N d2−XDyX]F e14B 49 4.3 Simulation details 50 4.4 The difference between magnetization and total magnetic moment 51 4.4.1 Total magnetic moment 51 4.4.2 Magnetization .51 4.5 Difference in magmom in outcar and oszicar file 52 4.5.1 Magmom in outcar file 52 4.5.2 Magmom in oszicar file 52 4.5.3 Potcar 1 52 4.5.4 Potcar 2 53 4.6 Magnetic anisotropy energy 54 4.7 Curie temperature 55 4.8 Ferromagnetic and antiferromagnetic configuration 56 4.8.1 Ferromagnetic configuration 56 4.8.2 Antiferromagnetic configuration 56 5 Results and Discussion 58 5.1 Optimized structure of All Models 58 5.1.1 Optimized structure of N d2F e14B 58 5.1.2 Optimized structure of [N d1.50Dy0.50]F e14B 59 5.1.3 Optimized structure of [N d1Dy1]F e14B 60 5.1.4 Optimized structure of [N d0.50Dy1.50]F e14B 62 5.1.5 Optimized structure of Dy2F e14B 64 5.1.6 Optimized structure lattice constant of all models 65 5.1.7 Volume of models 66 5.2 Magnetic moment of all models 68 5.2.1 Magnetic moment for N d2F e14B 68 5.2.2 Magnetic moment for [N d1.5Dy0.5]F e14B 69 5.2.3 Magnetic moment for [N d1Dy1]F e14B 71 5.2.4 Magnetic moment for [N d0.5Dy1.5]F e14B 74 5.2.5 Magnetic moment for Dy2F e14B 74 5.2.6 Total magnetization of all models 76 5.3 Magnetic anisotropy energy of all models 78 5.3.1 MAE of N d2F e14B 78 5.3.2 MAE of [N d1.50Dy0.50]F e14B 79 5.3.3 MAE of [N d1Dy1]F e14B 81 5.3.4 MAE of [N d0.50Dy1.50]F e14B 82 5.3.5 MAE of Dy2F e14B 84 5.4 MAE of all models 85 5.5 Curie temperature 86 5.6 Local magnetic moment for the model N d2F e14B (potcar 2) 89 5.6.1 MAE for the model N d2F e14B (potcar 2) 91 5.7 Coercive field 93 6 Conclusions 94 References 95

    [1] Hans Christian Oersted. Experiments on the effect of a current of electricity on
    the magnetic needle, 1820.
    [2] Oliver Gutfleisch. Controlling the properties of high energy density permanent
    magnetic materials by different processing routes. Journal of Physics D: Applied
    Physics, 33(17):R157, 2000.
    [3] Chapter 3 the structure and properties of alnico permanent magnet alloys. 3:107–188, 1982.
    [4] Masato Sagawa, Setsuo Fujimura, Norio Togawa, Hitoshi Yamamoto, and Yutaka
    Matsuura. New material for permanent magnets on a base of nd and fe. Journal
    of Applied Physics, 55(6):2083–2087, 1984.
    [5] John J Croat. Observation of large room-temperature coercivity in melt-spun nd0.4fe0. 6. Applied Physics Letters, 39(4):357–358, 1981.
    [6] Croat JJ, Herbst JF, Lee RW, and Pinkerton FE. Pr-fe and nd-fe-based materials:
    A new class of high-performance permanent magnets. Journal of Applied Physics,
    55(6):2078–2082, 1984.
    [7] John J Croat, Jan F Herbst, Robert W Lee, and Frederick E Pinkerton. Highenergy product nd-fe-b permanent magnets. Applied Physics Letters, 44(1):148–149, 1984.
    [8] Norman C Koon and BN Das. Magnetic properties of amorphous and crystallized(fe0. 82b0. 18) 0.9 tb0. 05la0. 05. Applied Physics Letters, 39(10):840–842, 1981.
    [9] JF Herbst and JJ Croat. Neodymium-iron-boron permanent magnets. Journal of
    magnetism and magnetic materials, 100(1-3):57–78, 1991.
    [10] Jan F Herbst, John J Croat, Frederick E Pinkerton, and WB Yelon. Relationships
    between crystal structure and magnetic properties in nd 2 fe 14 b. Physical Review
    B, 29(7):4176, 1984.
    [11] Lars Nordstr¨om, B¨orje Johansson, and MSS Brooks. Calculated magnetic moments of nd2fe14b. Journal of applied physics, 69(8):5708–5710, 1991.
    [12] R.J. Radwa´nski and J.J.M. Franse. The electronic structure of the nd3+ ion in
    nd2fe14b. Journal of Magnetism and Magnetic Materials, 80(1):14–18, 1989.
    [13] Xue-Fu Zhong and W. Y. Ching. Theoretical construction of the magnetic hamiltonian and zero-temperature anisotropic energy in nd2fe14b. Phys. Rev. B, 40:5292–5295, Sep 1989.
    [14] Yuji Umeda, Hideaki Yokota, Yoshitomo Tanaka, Tomoko Kitamura, Ryuji
    Hashimoto, Kenichi Suzuki, Daisuke Tanaka, Yasushi Enokido, and Kyung-Ku
    Choi. First-principles calculations of magnetocrystalline anisotropy in ndfeb type
    magnet materials. 2016.
    [15] D Haskel, JC Lang, Z Islam, A Cady, G Srajer, M Van Veenendaal, and PC Canfield. Atomic origin of magnetocrystalline anisotropy in nd 2 fe 14 b. Physical
    review letters, 95(21):217207, 2005.
    [16] SP Bates, G Kresse, and MJ Gillan. A systematic study of the surface energetics
    and structure of tio2 (110) by first-principles calculations. Surface Science, 385(2-
    3):386–394, 1997.
    [17] John P Perdew, Adrienn Ruzsinszky, G´abor I Csonka, Oleg A Vydrov, Gustavo E
    Scuseria, Lucian A Constantin, Xiaolan Zhou, and Kieron Burke. Perdew et al.
    reply. Physical Review Letters, 101(23):239702, 2008.
    [18] Sergei L Dudarev, Gianluigi A Botton, Sergey Y Savrasov, CJ Humphreys, and
    Adrian P Sutton. Electron-energy-loss spectra and the structural stability of nickel
    oxide: An lsda+ u study. Physical Review B, 57(3):1505, 1998.
    [19] Taro Fukazawa, Hisazumi Akai, Yosuke Harashima, and Takashi Miyake. Curie
    temperature of sm 2 fe 17 and nd 2 fe 14 b: a first-principles study. IEEE Transactions on Magnetics, 55(7):1–5, 2019.
    [20] M Sagawa. How the world’s strongest ‘neodymium magnet came to exist. Retrieved December, 19:2013, 2012.
    [21] Junjiro Kanamori. Interplay between electronic structure and correlation through the sd mixing in transition metal systems. Progress of Theoretical Physics Supplement, 101:1–10, 1990.
    [22] Yasutomi Tatetsu, Yosuke Harashima, Takashi Miyake, and Yoshihiro Gohda. Role of typical elements in nd 2 fe 14 x (x= b, c, n, o, f). Physical Review Materials,
    2(7):074410, 2018.
    [23] A Il Liechtenstein, MI Katsnelson, VP Antropov, and VA Gubanov. Local spin
    density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. Journal of Magnetism and Magnetic Materials, 67(1):65–74,1987.
    [24] J Korringa. On the calculation of the energy of a bloch wave in a metal. Physica,
    13(6-7):392–400, 1947.
    [25] Wo Kohn and No Rostoker. Solution of the schr¨odinger equation in periodic
    lattices with an application to metallic lithium. Physical Review, 94(5):1111, 1954.
    [26] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects. Physical review, 140(4A):A1133, 1965.
    [27] Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review,136(3B):B864, 1964.
    [28] John P Perdew and Alex Zunger. Self-interaction correction to density functional approximations for many-electron systems. Physical Review B, 23(10):5048, 1981.
    [29] ZW Li and AH Morrish. Negative exchange interactions and curie temperatures
    for sm 2 fe 17 sand sm 2 fe 17 n y s. Physical Review B, 55(6):3670, 1997.
    [30] Taro Fukazawa, Hisazumi Akai, Yosuke Harashima, and Takashi Miyake. Firstprinciples study of intersite magnetic couplings and curie temperature in rfe12- xcr x (r= y, nd, sm). Journal of the Physical Society of Japan, 87(4):044706, 2018.
    [31] Taro Fukazawa, Hisazumi Akai, Yosuke Harashima, and Takashi Miyake. Firstprinciples study of intersite magnetic couplings in ndfe12 and ndfe12x (x= b, c,
    n, o, f). Journal of Applied Physics, 122(5):053901, 2017.
    [32] Georg Kresse and J¨urgen Furthm¨uller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B,
    54(16):11169, 1996.
    [33] Enrico Fermi. Un metodo statistico per la determinazione di alcune priorieta
    dell’atome. Rend. Accad. Naz. Lincei, 6(602-607):32, 1927.
    [34] LH Thomas. Pmt. cambridge philos. sot., 23 (1926) 542. e. fermi. Z. Phys, 48:73,
    1928.
    [35] L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the
    Cambridge Philosophical Society, 23(5):542–548, 1927.
    [36] Dongzhe Li. Magneto-crystalline anisotropy of metallic nanostructures: Tightbinding and first-principles studies. PhD thesis, Universit´e Pierre et Marie CurieParis VI, 2015.
    [37] JP Perdew, ER McMullen, and Alex Zunger. Density-functional theory of the
    correlation energy in atoms and ions: a simple analytic model and a challenge.
    Physical Review A, 23(6):2785, 1981.
    [38] David M Ceperley and Berni J Alder. Ground state of the electron gas by a
    stochastic method. Physical review letters, 45(7):566, 1980.
    [39] Ph Kurz, F F¨orster, Lars Nordstr¨om, Gustav Bihlmayer, and Stefan Bl¨ugel. Ab
    initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method. Physical Review B, 69(2):024415, 2004.
    [40] Peter E Bl¨ochl, Ove Jepsen, and Ole Krogh Andersen. Improved tetrahedron
    method for brillouin-zone integrations. Physical Review B, 49(23):16223, 1994.
    [41] S. Miller and S. Luding. Event-driven molecular dynamics in parallel. Journal of
    Computational Physics, 193(1):306–316, 2004.
    [42] Wencai Yi, Gang Tang, Xin Chen, Bingchao Yang, and Xiaobing Liu. qvasp: A
    flexible toolkit for vasp users in materials simulations. Computer Physics Communications, 257:107535, 2020.
    [43] S Tanaka, H Moriya, H Tsuchiura, Akimasa Sakuma, M Diviˇs, and P Nov´ak.
    First-principles calculation of crystal field parameters of dy ions substituted for
    nd in nd-fe-b magnets. In Journal of Physics: Conference Series, volume 266,
    page 012045. IOP Publishing, 2011.
    [44] Imran Khan and Jisang Hong. Electronic structure and magnetic properties of
    nd2fe14b. Journal of the Korean Physical Society, 68(12):1409–1414, 2016.
    [45] SK Haider et al. Determination of dy substitution site in nd2- xdyxfe14b by haadfstem and illustration of magnetic anisotropy of “g” and “f” sites, before and after substitution. sci. rep. 11, 6347, 2021.
    [46] Isao Kitagawa and Yusuke Asari. Magnetic anisotropy of R2fe14B (r = Nd, gd, y): Density functional calculation by using the linear combination of pseudo-atomic- orbital method. Phys. Rev. B, 81:214408, Jun 2010.
    [47] XB Liu and Z Altounian. The partitioning of dy and tb in ndfeb magnets: A
    first-principles study. Journal of Applied Physics, 111(7):07A701, 2012.
    [48] S Matsuura Hirosawa, Y Yamamoto, H Fujimura, and S Sagawa. M. and yamauchi,hj appl. Phys, 59:873, 1986.
    [49] Abeer E Aly. Density of states of rare-earth permanent magnet nd2fe14b using
    spin-orbit coupling. International Journal of Pure and Applied Physics, 5(3):215–
    229, 2009.
    [50] D Givord, HS Li, and F Tasset. Polarized neutron study of the compounds y2fe14b and nd2fe14b. Journal of applied physics, 57(8):4100–4102, 1985.
    [51] Ahmad Asali and Josef Fidler. Influence of strain and substitution on magne
    tocrystalline anisotropy of r2fe14b (r= pr, dy and y). Journal of Magnetism and
    Magnetic Materials, 488:165370, 2019.
    [52] R Fruchart, Ph l’H´eritier, P Dalmas De Reotier, D Fruchart, P Wolfers, JMD
    Coey, LP Ferreira, R Guillen, P Vulliet, and A Yaouanc. Mossbauer spectroscopy
    of r2fe14b. Journal of Physics F: Metal Physics, 17(2):483, 1987.
    [53] The Materials Project. Materials data on nd2fe14b by materials project.
    [54] Isao Kitagawa and Yusuke Asari. Magnetic anisotropy of r 2 fe 14 b (r= nd, gd, y): density functional calculation by using the linear combination of pseudo-atomicorbital method. Physical Review B, 81(21):214408, 2010.
    [55] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga. Permanent
    magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE
    Transactions on Magnetics, 20(5):1584–1589, 1984.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE