| 研究生: |
楊捷宇 Yang, Jie-Yu |
|---|---|
| 論文名稱: |
應用網印表面改質技術製作不同圖案冷凝銅管之熱傳研究 Studies of screen printed surface modification techniques on condensing heat transfer enhancement of copper tube with different patterns |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 混合潤濕性圖案表面 、網版印刷技術 、冷凝熱傳 |
| 外文關鍵詞: | Hybrid wettability surface, Screen printing technique, Condensation heat transfer |
| 相關次數: | 點閱:85 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為在銅管外壁設計不同混合潤濕性圖形表面改質,利用親疏水區域之特性,使冷凝液滴形成並驅動結合成大液滴離開熱交換冷凝器表面,增強銅管冷凝熱傳效率,以提升冷凝熱交換器內部銅管整體冷凝熱傳性能。表面改質乃利用網印製程,此方法不僅可降低成本也可以節省微影蝕刻的時間。本研究製作之五種銅管混合潤濕性圖形:條狀圖形、疏水圓點、親水圓點、三角陣列及魚骨圖形,梯度表面的親水區設計主要寬度皆為0.5 mm,變化疏水區的寬度並進行不同銅管表面冷凝熱傳實驗及觀察表面液滴滯留現象。與未經改質的純銅管與全疏水銅管作熱傳性能比較,結果發現在固定實驗條件之下,疏水區寬度WDWC為0.862 mm, 親水區寬度WFWC為0.5 mm的條狀圖形,在ΔTsub = 5K介於ΔTsub = 15 K時熱傳效果與其他圖形相比較佳,在過冷溫度 ΔTsub = 15 K時可達4.8 kW,效率比純銅管提高了71% 。且較無液滴滯留現象。其他圖案的液滴滯留現象都較為嚴重,在ΔTsub = 5K介於ΔTsub = 15 K時都無較佳表現,圓點圖形及三角陣列圖形需在ΔTsub > 30K才可達到4 kW的熱傳量。在液滴滯留現象方面,條狀圖形的表面較無液滴滯留,具良好的機制驅動液滴並互相結合及快速帶離表面。疏水圓點圖形因小圓點形成的液滴易與親水區的水膜相連接,排水困難。三角陣列圖形的親水楔型能有效驅動液滴,但在楔型與楔型之間產生大量液滴滯留。魚骨圖形則較不易產生液滴滯留的現象。整體來說,本研究製作之條狀圖形表面改質熱傳性能最好,可應用於熱交換冷凝器上。
In order to enhance condensation heat transfer efficiency of a copper tube with fast droplet movement. This research use screen printed surface modification to fabricate different wettability patterns on copper tube. Applying the screen printing technique not only reduce the fabricate cost but also have highly convenient in manufacture. Surface modification can define the area for hydrophobic or hydrophilic. Hydrophobic areas (dropwise condensation areas) can form droplets with high contact angle, then hydrophilic areas (filmwise condensation area) attract the droplets forming a water film, thus it can move the droplet quickly and speed up the condensation. This research designs different copper tube with different patterns, including unmodified pure copper tube, superhydrophobic, strip pattern, hydrophobic dot pattern, hydrophilic dot pattern, triangle array pattern and fishbone pattern. Compared these patterns condensation heat transfer efficiency, all the wettability patterns heat transfer efficiency are better than unmodified pure copper tube, but the strip pattern with hydrophobic width WDWC 0.862mm and hydrophilic width WFWC 0.5mm have the greatest heat flux. At ΔTsub = 16 K, strip pattern heat flux can reach 4.8 kW. Other patterns cannot reach such higher heat flux.
Strip pattern have clearly hydrophobic and hydrophilic area, it won’t let liquid films stuck on the surface. But other patterns, like hydrophobic dot pattern, hydrophilic dot pattern and triangle array pattern easily accumulate droplets on the hydrophilic area, it will decrease the heat transfer efficiency due to the surface cannot form new droplets quickly. In summary, strip pattern have great mechanism to increase the heat flux, it can also applied on the condenser.
[1]張進發,火力發電與污染防治,物理雙月刊(廿九卷三期),2007
[2]經濟部能源局,工業技術研究院,能源與環境研究所,蒸氣冷凝水系統節能手冊,http://www.eeoa.org.tw/boilers.html
[3]A. L. Godson, Experimental study on forced convective heat transfer with low volume fraction of CuO/water nanofluid. Energies, 2009, 2.1: 97-119.
[4]K. Ryuhei, Y Shun, F. Hirokazu, The Effect of Inner Grooved Tubes on the Heat Transfer Performace of Air-Cooled Heat Exchangers of Co2 Heat Pump System, international Refrigeration and Air Conditioning Conference. Paper 1268.,2012
[5]馬哲儒,真空蒸鍍薄膜上的滴式冷凝,行政院國家科學委員會專題研究計畫成果報告,民83年
[6]J. W. Westwater, Gold Surfaces for Condensation Heat Transfer, Department of Chemical Engineering, University of Illinois, Urbana, IL., U.S.A. Gold Bull., 1981, 14, (3)
[7]J. W. ROSE, Condensation heat transfer fundamentals. Chemical Engineering Research and Design, 1998, 76.2: 143-152.
[8]B. S. Sikarwar, K. Muralidhar, and S. Khandekar, Dropwise Condensation Underneath Chemically Textured Surfaces: Simulation and Experiments. 2010.
[9]J. R. Thome, Encyclopedia of Two-Phase Heat Transfer and Flow I Fundamentals and Methods ,World Scientific,2015
[10]R.W. Bonner III,. Dropwise Condensation in Vapor Chambers, 26th IEEE SEMI-THERM Symposium,2010
[11]S. Vemuri, K. J. Kim, B. D. Wood, Govindaraju, S., Bell, T. W., Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan, Applied Thermal Engineering, Vol. 26, pp. 421-429, 2006.
[12]V. Berndt, S. Zunft and H. Müller-Steinhagen, Theoretical and experimental study on dropwise condensation in plate heat exchangers , 5th European Thermal-Sciences Conference, The Netherlands, 2008
[13]D. J. Huang, T. S. Leu, Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink, Applied Thermal Engineering, Vol. 75, pp. 908-917, 2015.
[14]T.-T. Wang, P.-W. Huang & S-K. Fan, Droplets Oscillation and Continuous Pumping by Asymmetric Electrowetting, 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, p. 174, 2006.
[15]H. S. Khoo, F. G. Tseng, Spontaneous high-speed transport of subnanoliter water droplet on gradient nanotextured surfaces, Applied Physics Letters, Vol. 95 (6), pp. 063108, 2009.
[16]T. Yasuda, J. Nakamura, K. Nakayama & M. Yamanaka, Generation of a Microliquid Concentration Series Using Wettability Gradient and Electrowetting, 16th international Conference on Miniaturized Systems for Chemistry and Life Sciences, Okinawa, Japan, pp. 1456-1458, 2012.
[17]J. Zhang, L. Xue & Y. Han, Fabrication Gradient Surfaces by Changing Polystyrene Microsphere Topography, Langmuir, Vol. 21 (1), pp. 5-8, 2005.
[18]X. Yu, Z. Wang, Y. Jiang & X. Zhang, Surface Gradient Material: From Superhydrophobicity to Superhydrophilicity, Langmuir, Vol. 22 (10), pp. 4483-4486, 2006
[19]黃泓銘,表面改質銅管之冷凝熱傳實驗探討,碩士論文,國立成功大學航空與太空研究所,2015
[20]H. Bai, L. Wang, J. Ju, R. Sun, Y. Zheng & L. Jiang, Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns, Adv. Mater., Vol. 26 (29), pp. 5025-5030, 2014.
[21]J. W. ROSE., Dropwise condensation theory and experiments: a review [J]. Proceedings Institution of Mechanical Engineers,216: 115-128.,2002
[22]A. Yamauchi, S. Kumagai & T. Takeyama, Condensation heat transfer on various dropwise-filmwise coexisting surfaces, Heat Transfer JPN. Res., Vol. 15, pp. 50-64, 1986.
[23]X.-h. Ma, L. Wang, J.-b. Chen, X.-B. Zhu & J.-M. An, Condensation heat transfer of steam on vertical dropwise and filmwise coexisting surfaces with a thick organic film promoting dropwise mode, Exp. Heat Transfer, Vol. 16 (4), pp. 239-253, 2003
[24]A. Chatterjee , M. M. Derby ,Y. Peles , M. K. Jensen , Enhancement of condensation heat transfer with patterned surfaces, International Journal of Heat and Mass Transfer 71 675–681,2014
[25]M. M. Derby , A. Chatterjee , Y. Peles , M. K. Jensen, Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns, International Journal of Heat and Mass Transfer 68 151–160,2014
[26] B. Peng, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect. International Journal of Heat and Mass Transfer, 2014, 77: 785-794.
[27] D. Lee, J-C Hyun, S-A Hong, Long-Lasting Superhydrophilic PDMS Surface By Atomopheric-Pressure Plasma Polymerization, National Research Foundation of Korea (NRF, Project No. 2009-0083811),2009
[28]D-J Huang, Enhancement of Condensation Heat Transfer with Filmwise/Dropwise Hybrid Surface, Ph.D thesis, National Cheng Kung University, 2016
[29] A. R. Parker & C. R. Lawrence, Water capture by a desert beetle, Nature, Vol. 414, pp. 33-34, 2001.
[30]P. C. Zielke & J. A. Szymczyk, Experimental investigation of the motion and deformation of droplets on surfaces with a linear wettability gradient, Eur. Phys. J. Spec. Top., Vol. 166, pp. 155-158, 2009.
[31]D. Julthongpiput, M. J. Fasolka, W. Zhang, T. Nguyen & E. J. Amis, Gradient Chemical Micropatterns: A Reference Substrate for Surface Nanometrology, Nano Lett., Vol. 5 (8), pp. 1535-1540, 2005.
[32]B. A. Malouin, N. A. Koratkar, A. H. Hirsa & Z. Wang, Directed rebounding of droplets by microscale surface roughness gradients, Appl. Phys. Lett., Vol. 96 (23), p. 234103, 2010.
[33] P. Hao, C. Lv, X. Zhang, Z. Yao & F. He, Driving liquid droplets on microstructured gradient surface by mechanical vibration, Chem. Eng. Sci., Vol. 66 (10), pp. 2118-2123, 2011.
[34]S. Daniel, M. K. Chaudhury & J. C. Chen, Fast Drop Movements Resulting from the Phase Change on a Gradient Surface, Science, Vol. 291 (5504), pp. 633-636, 2001.