| 研究生: |
譚皓文 Tsn, Hao-Wen |
|---|---|
| 論文名稱: |
強力黴素衍生物對口腔鱗狀細胞癌中基質金屬蛋白酶-9的抑制能力研究 Inhibition of matrix-metalloproteinase-9 activity in oral squamous-cell carcinoma by doxycycline analogs |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 強力黴素 、化學修飾 、基質金屬蛋白酶-9 、Smad4 |
| 外文關鍵詞: | doxycline, chemical modification, matrix metalloproteinase-9, Smad4 |
| 相關次數: | 點閱:41 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗室先前研究口腔鱗狀細胞癌SCC-15與基質金屬蛋白酶(Matrix metalloproteinase-9, MMP-9),以SPR證明了強力黴素(doxycycline, DOX)是與TGF-β/Smad pathway中的Smad4蛋白結合,以抑制MMP-9的基因表現,並藉著移除DOX四號碳上的二甲基胺生成TMC-1,降低其抗菌性,但保留甚至提升其抑制膠原蛋白酶活性的能力。本研究希望利用化學修飾TMC-1能進一步提升藥物抑制效果,有文獻結果顯示親油性及推電子基團可能會提升四環黴素的抑制效果,於是本研究在9號碳加上第三丁基、於7號碳加上硝基並還原成胺基,合成TMC-4、TMC-5及TMC-6,並利用HPLC和NMR純化和鑑定產物,再以Zymography測試各藥物對SCC-15的MMP-9抑制效果。結果顯示在C7引入強拉電子的硝基時藥物抑制效果下降,但毒殺能力也上升,而改引入推電子的胺基時,其抑制能力在2.5 μg/ml時觀察不到,但藥物濃度上升後重新展現明顯的抑制效果,而在C9引入第三丁基後,雖然MMP-9表達大幅下降,但藥物毒殺能力也上升了,另外也發現強力黴素衍生物能抑制MMP-2表達,其趨勢與MMP-9相近。另外我們也發現四環黴素類化合物對正常細胞的毒性較對癌細胞低。TMC-1依然是這些藥物中抑制MMP-9表達最明顯的,在2.5 μg/ml就有明顯效果。
The laboratory previously studied oral squamous cell carcinoma SCC-15 and matrix metalloproteinase-9 (MMP-9), and demonstrated by SPR that doxycycline (DOX) combines with Samd4 in TGF-β/Smad pathway to inhibit the gene expression of MMP-9. Removing the dimethylamine on C4 of DOX, which called TMC-1, will reduce its antibacterial, but retain or even enhance its effect of inhibiting the activity of collagenase. This study try to further promote the doxycycline analogs inhibition effect by chemical modification of 4-dedimethylaminodoxycycline (TMC-1). Literatures report that lipophilicity and electron-donating groups may enhance the inhibitory effect of tetracycline. Add a t-butyl group on the 9th carbon, a nitro group on the 7th carbon, and then reduce the nitro group to an amine group to produce
9-t-butyl-4-dedimethylaminodoxycycline(TMC-4),
9-t-butyl-4-dedimethylamino-7-nitrodoxycycline (TMC-5)
and 7-amine-9-t-butyl-4-dedimethylaminodoxycycline (TMC-6).
The products were purified and identified by HPLC and NMR. Then test the compounds inhibitory effect by zymography. Nitro group, which is a strong electron-withdrawing group, on C7 lowered its inhibition while enhanced its cytotoxicity. Samples of TMC-4, which was hydrophobic, show very low activity of MMP-9 but more toxic. The analog with an electron-donating group, amine group, show no ability of inhibition at low concentration but restored an explicit ability of inhibition at higher concentration. TMC-1 is still the most significant inhibitor of MMP-9 expression in these drugs, and has a considerable effect at concentration of 2.5 μg/ml.
1. Mashberg, A., P. Barsa, and M.L. Grossman, A study of the relationship between mouthwash use and oral and pharyngeal cancer. Journal of the American Dental Association (1939), 1985. 110(5): p. 731-734.
2. Rodriguez, T., et al., Risk factors for oral and pharyngeal cancer in young adults. Oral oncology, 2004. 40(2): p. 207-213.
3. Yoon, S.-O., et al., Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. Journal of biochemistry and molecular biology, 2003. 36(1): p. 128-137.
4. Robert, A., M. Anzano, and L. Lamb, New class of TGF potentiated epidermal growth factor: isolation from non-neo—plastic tissue. Proc Natl Acad Sci, 1981. 78(9): p. 5339-5343.
5. Colak, S. and P. ten Dijke, Targeting TGF-β signaling in cancer. Trends in Cancer, 2017. 3(1): p. 56-71.
6. Shipley, G.D., R.F. Tucker, and H.L. Moses, Type beta transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR-2B cells into S phase after a prolonged prereplicative interval. Proceedings of the National Academy of Sciences, 1985. 82(12): p. 4147-4151.
7. Chen, M.-F., et al., Significance of the TGF-β1/IL-6 axis in oral cancer. Clinical Science, 2012. 122(10): p. 459-472.
8. Sun, L., et al., Transforming growth factor-β1 promotes matrix metalloproteinase-9–mediated oral cancer invasion through snail expression. Molecular Cancer Research, 2008. 6(1): p. 10-20.
9. Xie, H., et al., Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-β1/Smad/MMP9 signals. Oncotarget, 2015. 6(14): p. 12326.
10. Villar, V., J. Kocic, and J.F. Santibanez, Skip regulates TGF-β1-induced extracellular matrix degrading proteases expression in human PC-3 prostate cancer cells. Prostate cancer, 2013. 2013.
11. Wiercinska, E., et al., The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast cancer research and treatment, 2011. 128(3): p. 657-666.
12. Lei, H., et al., The effects of genistein on transforming growth factor-β1-induced invasion and metastasis in human pancreatic cancer cell line Panc-1in vitro. Chinese medical journal, 2012. 125(11): p. 2032-2040.
13. Fanjul-Fernández, M., et al., Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2010. 1803(1): p. 3-19.
14. Acharya, M.R., et al., Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resistance Updates, 2004. 7(3): p. 195-208.
15. Massagué, J., J. Seoane, and D. Wotton, Smad transcription factors. Genes & development, 2005. 19(23): p. 2783-2810.
16. Schmierer, B. and C.S. Hill, TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nature reviews Molecular cell biology, 2007. 8(12): p. 970.
17. Zhang, L., et al., TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Molecular cell, 2013. 51(5): p. 559-572.
18. Kitisin, K., et al., TGF-β signaling in development. Science Signaling, 2007. 2007(399): p. cm1-cm1.
19. Hayashida, T., M. Decaestecker, and H.W. Schnaper, Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. The FASEB journal, 2003. 17(11): p. 1576-1578.
20. Chapnick, D.A., et al., Partners in crime: the TGFβ and MAPK pathways in cancer progression. Cell & bioscience, 2011. 1(1): p. 42.
21. Wu, T.-C., et al., Phorbol ester-induced angiogenesis of endothelial progenitor cells: The role of NADPH oxidase-mediated, redox-related matrix metalloproteinase pathways. PloS one, 2019. 14(1): p. e0209426.
22. Brew, K. and H. Nagase, The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et biophysica acta (BBA)-molecular cell research, 2010. 1803(1): p. 55-71.
23. Coussens, L.M., B. Fingleton, and L.M. Matrisian, Matrix metalloproteinase inhibitors and cancer—trials and tribulations. Science, 2002. 295(5564): p. 2387-2392.
24. Gialeli, C., A.D. Theocharis, and N.K. Karamanos, Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS journal, 2011. 278(1): p. 16-27.
25. Drummond, A.H., et al., Preclinical and clinical studies of MMP inhibitors in cancer. Annals of the New York Academy of Sciences, 1999. 878(1): p. 228-235.
26. Chopra, I. and M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001. 65(2): p. 232-260.
27. Daghrir, R. and P. Drogui, Tetracycline antibiotics in the environment: a review. Environmental chemistry letters, 2013. 11(3): p. 209-227.
28. Agwuh, K.N. and A. MacGowan, Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. Journal of Antimicrobial Chemotherapy, 2006. 58(2): p. 256-265.
29. Ramamurthy, N., E. Zebrowski, and L. Golub, The effect of alloxan diabetes on gingival collagen metabolism in rats. Archives of oral biology, 1972. 17(11): p. 1551-1560.
30. Golub, L., et al., Minocycline reduces gingival collagenolytic activity during diabetes: preliminary observations and a proposed new mechanism of action. Journal of periodontal research, 1983. 18(5): p. 516-526.
31. Ghangurde, A.A., et al., Role of chemically modified tetracyclines in the management of periodontal diseases: a review. Drug research, 2017. 67(05): p. 258-265.
32. Tolomeo, M., et al., Effects of chemically modified tetracyclines (CMTs) in sensitive, multidrug resistant and apoptosis resistant leukaemia cell lines. British journal of pharmacology, 2001. 133(2): p. 306-314.
33. Lokeshwar, B.L., E. Escatel, and B. Zhu, Cytotoxic activity and inhibition of tumor cell invasion by derivatives of a chemically modified tetracycline CMT-3 (COL-3). Current medicinal chemistry, 2001. 8(3): p. 271-279.
34. Lee, M., et al., CMT-3, a non-antimicrobial tetracycline (TC), inhibits MT1-MMP activity: relevance to cancer. Current medicinal chemistry, 2001. 8(3): p. 257-260.
35. 林志強, 四環黴素抑制口腔鱗狀癌細胞內基質金屬蛋白酶-9 表現量之抑制機制的研究. 2013.
36. Golub, L.M., et al., Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Critical Reviews in Oral Biology & Medicine, 1991. 2(3): p. 297-321.
37. Lokeshwar, B.L., et al., Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non‐antimicrobial tetracycline analog (COL‐3) in a metastatic prostate cancer model. International journal of cancer, 2002. 98(2): p. 297-309.
38. 廖靜洳, 四環黴素衍生物對口腔鱗狀癌細胞內基質金屬蛋白酶-9 的抑制研究. 成功大學化學系學位論文, 2017: p. 1-72.
39. Levy, S.B., et al., Tetracycline compounds having target therapeutic activities. 2015, Google Patents.
40. Kleiner, D.E. and W.G. Stetlerstevenson, Quantitative zymography: detection of picogram quantities of gelatinases. Analytical biochemistry, 1994. 218(2): p. 325-329.
41. Kupai, K., et al., Matrix metalloproteinase activity assays: Importance of zymography. Journal of pharmacological and toxicological methods, 2010. 61(2): p. 205-209.
42. Hlavka, J.J. and R.J. Ablin, Tetracycline derivatives and methods of use thereof. 2007, Google Patents.
43. Zhou, Z.-y., et al., Synthesis and neuroprotective activity of novel C4, C7 derivatives in tetracycline series. JOURNAL OF CHINESE PHARMACEUTICAL SCIENCES, 2004. 13: p. 217-220.
44. Nelson, M.L., et al., 7, 9-substituted tetracycline compounds. 2004, Google Patents.
45. Zhang, J., et al., Synthesis and antibacterial activity of doxycycline neoglycosides. Journal of natural products, 2013. 76(9): p. 1627-1636.
46. Vaalamo, M., Matrix Metalloproteinases and Their Inhibitors in Normal and Aberrant Wound Repair: Expression patterns of collagenases-1 and-3, stromelysins-1 and-2, matrilysin, metalloelastase and TIMPs-1,-2,-3 and-4 in healing cutaneous wounds and in chrome ulcers of the skin and the intestine. 2000.
47. Singh, P., J. Wig, and R. Srinivasan, The Smad family and its role in pancreatic cancer. Indian journal of cancer, 2011. 48(3): p. 351.
校內:2024-08-27公開