| 研究生: |
石子文 Shih, Tzu-Wen |
|---|---|
| 論文名稱: |
二氧化鈦光電極製備氣氛對染料敏化太陽能電池效率的影響 Effects of TiO2 Photoelectrode Preparation Methods on the Efficiency of Dye-Sensitized Solar Cells |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 192 |
| 中文關鍵詞: | 電漿表面處理 、氧空缺 、染料敏化太陽能電池 、水熱法 |
| 外文關鍵詞: | oxygen vacancy, plasma surface treatment, hydrothermal method, Dye-sensitized solar cell |
| 相關次數: | 點閱:70 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為研究染料敏化太陽能電池中之二氧化鈦光電極於不同燒結氣氛以及空氣燒結後不同電漿處理之影響,其中探討各種處理對於表面氧缺陷、染料吸附度、表面官能基以及單色光轉換效率(IPCE)的影響,同時也針對組成染料敏化太陽能電池後之光電轉換效率進行討論。本研究分為三階段,第一階段為利用水熱法研究出最佳二氧化鈦顆粒製備條件,並以最佳條件製作二氧化鈦光電極進行第二階段不同燒結氣氛以及第三階段以空氣燒結後不同電漿處理的研究。
第一階段中,主要以水熱法製作TiO2 顆粒,並藉由改變檸檬酸加入的順序、水熱時間以及溶液濃度,以合成不同的二氧化鈦奈米顆粒。研究中發現加入檸檬酸的二氧化鈦顆粒均為銳鈦礦相(anatase)。此階段可得到最佳條件之二氧化鈦粉末之製成條件為:在0℃情況下配製0.9M 四氯化鈦溶液,配製完後再加入檸檬酸,並在200℃下進行水熱法2 小時可得較佳結晶性質以及高的比表面積。
第二階段為使用第一階段得到最佳條件之二氧化鈦顆粒製成光電極後,改變光電極薄膜之燒結氣氛。使用的燒結氣氛包含空氣、氮氣、以及氧氣。第三階段為空氣燒結後使用不同氣體電漿進行表面處理,其中使用之電漿包含氧氣、氫氣、氮氣、甲烷+氮氣。研究發現在不同氣氛中燒結會影響薄膜中Ti 的氧化態,染料吸附度以及電池效率。本實驗顯示在氧氣氛中燒結的薄膜中Ti 的氧化態最高(Ti4+)、有最好的染料吸附度以及電池效率。此外,研究發現光電極薄膜表面之Ti 的氧化態對於不同電漿處理皆會造成影響。其中氧氣電漿會使Ti 的氧化態升高(Ti3+ -> Ti4+),亦即氧空缺減少,而其他三種電漿皆使Ti 的氧化態降低,亦即氧空缺增加。氮氣以及甲烷+氮氣電漿處理的光電極薄膜會有氮摻雜效果而增加單色光轉換效率。研究中發現甲烷+氮氣電漿處理的光電極薄膜除了氮摻雜使單色光轉換效率增加外,也發現表面C-C sp2 鍵結的貢獻增加其電
子傳輸效果,使得所組成的染料敏化太陽能電池有最佳的染料吸附度以及光電轉換效率。
Effects of various sintering environments and the surface plasma treatments on the performance of TiO2 photoelectrodes used in dye-sensitized solar cells (DSSCs) were studied in this research. The surface oxygen defects, dye adsorption, and surface functional groups were examined in order to explore their effects of the incident photon-to-current conversion efficiency (IPCE) and the cell efficiency. This study was divided into three parts. In the first part, a hydrothermal method was used to synthesize TiO2 nanoparticles. The optimal condition was determined and used to fabricate TiO2 nanoparticles. In the second and the third parts, effects of using various sintering enviroments and plasma surface treatments on the performance of TiO2 photoelectrodes were studied, respectively.
TiO2 nanoparticles were synthesized using a hydrothermal method under various solution temperatures, hydrothermal times, and solution concentrations. The use of citric acid and the procedure of adding the citric acid were also examined. As citric acid was added the TiO2 nanoparticles obtained at all the conditions exhibit anatase phase. The optimal hydrothermal condition was determined to be solution temperature = 0℃, hydrothermal time = 2 hr, and TiCl4 precursor solution concentration = 0.9M. The citric acid was added after the addition of TiCl4.
TiO2 photoelectrodes were prepared using obtained TiO2 nanoparticles using the optimal hydrothermal condition. TiO2 photoelectrodes were sintered under different environments of air, O2, and N2. For surface plasma treatments, O2, H2, N2, and CH4 + N2 were used. It was found that the sintering gases affect the oxidation state of Ti, dye adsorption, and the cell efficiency. For different sintering gases, higher cell efficiency was obtained when with O2 was used as the sintering gas. This is ascribed to the increased Ti oxide state and improved dye adsorption. For plasma treatment, O2 plasma treatment was found to have the same effect as oxygen sintering. With the plasma treatments of N2 and CH4 + N2, enhanced efficiencies were obtained due to the doping of N, which enhances IPCE. In this study, the highest cell efficiency was obtained for the photoelectrodes that were subjected to CH4 + N2 plasma treatment. This is due to not only higher dye adsorption and higher IPCE but also the increase in C-C sp2 bonds that enhances the electron transport.
[1] National Renewable Energy Laboratory, NREL
[2] M. A. Green, Prog. Photovoltaics ,9 (2001)123
[3] A.J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 248 (2004) 1165–1179
[4] J. Weidmann, T. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, F. Koch, Solar Energy Materials and Solar Cells, 56 (1999) 153-165
[5] H. Tang, K. Prasad, R. Sanjine«s, P.E. Schmid, F. Levy, J. Appl. Phys. 75 (1994) 2042.
[6] A. von Hippel, J. Kalnajs, W.B. Westphal, J. Phys. Chem. Solids 23 (1962) 779.
[7] L.N. Lewis et al. Solar Energy Materials and Solar Cells, 90 (2006) 1041–1051
[8] Kim et al, J. Vac. Sci. Technol. A, Vol. 25, No. 4, Jul/Aug 2007
[9] Sharma R, Das PP, Misra M, et al. Nanotecnology 20 (2009)
[10] T. Yuji, Y.M. Sung, IEEE Transactions on Plasma Science, Vol.35,4( 2007)
[11] B. O’Regan , M. Gra¨tzel , Nature vol 353, 24(1991) 737-739
[12] M. Gra¨tzel, Inorg. Chem. 44 (2005) 6841.
[13] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P.Liska, S. Ito, B. Takeru, M. Gra¨tzel, J. Am. Chem. Soc. 127(2005) 16835.
[14] M. Gra¨tzel, J.photochem. Photobio. C: Photochem. Rev. 4 (2003)145-153.
[15] M. Gratzel, Nature, 414( 2001)338-344
[16] T. W. Hamann, A. R. Jensen, A. B. F. Martinson, H. V. Ryswykac and J. T. Huppa, Energy Environ. Sci., 1 (2008) 66–78.
[17] E. Palomares , J.N. Clifford , S.A. Haque, T. Lutz , J.R. Durrant , Chem Commun. (2002) 1464–1465
[18] K. Tennakone, V. P. S. Perera, I. R. M. Kottegoda and G. R. A. Kum, J. Phys. D: Appl. Phys. 32 (1999) 374
[19] R. Argazzi, C. A. Bignozzi, T. A. Heimer and G. J. Meyer, Inorg. Chem., 36 (1997) 2-3
[20] B. A. Gregg, F. Pichot, S. Ferrere and C. L. Fields, J. Phys. Chem. B. 105(2001)1422.
[21] K. H. Ko, Y. C. Lee, J. Colloid Interface Sci. 283 (2005) 482–487
[22] G.P. Smestad, M. Gratzel, M. J. Chem. Educ. 75(1998) 752-756
[23] A. B. F. Martinson, T. W. Hamann, M. J. Pellin and J. T. Hupp, Chem. Eur. J. 14(2008) 4458–4467.
[24] F. Cao, G. Oskam, G.J. Meyer, P.C. Searson, J. Phys. Chem. 100 (1996) 17021.
[25] A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U.Wijayantha, J. Phys. Chem. B 104 (2000) 949.
[26] G. Schlichthörl, S.Y. Huang, J. Sprague, A.J. Frank, J. Phys.Chem. B 101 (1997) 8141.
[27] N. Kopidakis, E.A. Schiff, N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104 (2000) 3930.
[28] S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada,S.Yanagida, J. Phys. Chem. B 107 (2003) 8607.
[29] S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura,Y.Wada, S.Yanagida, Electrochem. Commun. 5 (2003) 804.
[30] Z. Zhe, Z. Baoxue, G. Weijie,X. Bitao, Z. Qing , C. Weimin, Chin. Sci. Bull.50 (2005) 2408-2412
[31] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank J. Phys. Chem. B 107(2003) 11307-11315
[32] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura,T. Sakata, Y. Wada, H. Mori, S. Yanagida, J. Phys. Chem. B 106 (2002) 10004.
[33] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H.V. Ryswykac and J. T. Huppa, Energy Environ. Sci. 1( 2008) 66–78.
[34] G. Sauve, M. E. Cass, S. J. Doig, I. Lauermann, K. Pomykal and N. S. Lewis, J. Phys. Chem. B 104(2000) 3488–3491.
[35] L. M. Peter, Phys. Chem. Chem. Phys. 9( 2007) 2630–2642.
[36] G. Redmond, D.Fitzmaurice, M. Gra¨tzel, Chem. Mater. 6(1994) 686
[37] S. Ferrere, A. Zaban, B.Gregg, A. J. Phys. Chem. B 101(1997) 4490.
[38] K.Sayama, H.Sugihara, H.Arakawa, Chem. Mater. 10(1998) 3825
[39] A.Turkovic, C. Orel, Z. Sol. Energy Mater. Sol. Cells. 45(1997) 275
[40] N.G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B 104(2000) 8989-8994
[41] A. Fujishima, K. Honda, Nature 238 (1972) 37.
[42] K. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, K. Toda, Chem. Mater. 17 (2005) 5161.
[43] W. Ho, J.C. Yu, J. Mol. Catal. A: Chem. 247 (2006) 268.
[44] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1.
[45] D.F. Ollis, H. Al-Ekabi, Elsevier Sci. Pub., New York, 1993.
[46] K. Sayama, H. Arakawa, J. Photochem. Photobiol. A: Chem. 77 (1994) 243.
[47] R. Abe, K. Sayama, K. Domen, H. Arakawa, Chem. Phys. Lett. 344 (2001) 339.
[48] N. Wu, M. Lee, Z. Pon, J. Hsu, J. Photochem. Photobiol. A: Chem. 163 (2004) 277.
[49] A.A. Nada, M.H. Barakat, H.A. Hamed, N.R. Rohamed, T.N. Veziroglu, Int. J. Hydrogen Energy 30 (2005) 687.
[50] T. Sreethawong, Y. Suzuki, S. Yoshikawa, Int. J. Hydrogen Energy 30 (2005)1053.
[51] D. Jing, Y. Zhang, L. Guo, Chem. Phys. Lett. 415 (2005) 74.
[52] N.L. Wu, M.H. Lee, Int. J. Hydrogen Energy 29 (2004) 1601.
[53] http://webmineral.com/jpowd/index.php jPOWD Mineral Structures
[54] A. Wold, Chem. Mater. 5(1993) 280
[55] M. R.Hoffmann, S. T.Martin, W.Choi, D. W.Bahnemann, Chem. Rev. 95(1995) 69.
[56] H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater.7 (1995)663
[57] N.G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B,104 (2000) 8989-8994
[58] T. P. Chou, Q. Zhang, B. Russo, G. E. Fryxell, G Cao, J. Phys. Chem. C , 111(2007) 6296-6302
[59] L. K. Randeniya, A. Bendavid, P. J. Martin, E. W. Preston, J. Phys. Chem. C , 111(2007) 18334-18340
[60] C. Pe´rez Leo´n, L. Kador, B. Peng, M. Thelakkat, J. Phys. Chem. B 110,(2006) 8723-873
[61] N. Robertson, Angew Chem. Int. Ed., 45(2006) 2– 10
[62] A. Mishra, M. K. R. Fischer, B. Peter, Angew. Chem. Int. Ed., 48 (2009) 2474–2499
[63] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gra1tzel, J. Phys. Chem. B , 107(2003) 8981-8987
[64] Y. Lu, D.J. Choi, J. Nelson, O.B. Yang, B. A. Parkinsona, J. Electrochem. Soc, 153 8(2006)131-137
[65] M. Grätzel, MRS Bull, Jan 30 (2005)
[66] A. F. Wells, Struct. Inorganic Chem. 4th ed.; Clarendon Transformation. J. Am. Ceram. Soc. 48(1965) 391-98.
[67] H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H.Mori, T. Sakata and S. Yanagida, J. Mater. Chem. 11(2001)1694
[68] H. Yin, Y. Wada, T. Kitamura, T. Sumida, Y. Hasegawa, S. Yanagida, J. Mater. Chem. 12( 2002) 378–383
[69] Chou et al, J. Phys. Chem. C, 111 (2007) 11760-11762
[70] C. Y. Huang et al. Solar Energy Materials & Solar Cells 90 (2006) 2391–2397
[71] D.Nicholls, The Macmillan Press Ltd.: New York (1974) Chapter 11
[72] K. Yanagisawa , J. Ovenstone, J. Phys. Chem. B, 103(1999)7781.
[73] 汪建民, 材料分析中國材料科學學會, 1998
[74] G. Cao, Imperial College Press, 1st edition (2004)53
[75] A. J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 248 (2004) 1165–1179
[76] V.S. Lusvardi, M.A. Barteau, J.G. Chen, J.Eng. Jr, B. Frühberger, A. Teplyakov, Surface Sci. 397(1998) 237-250
[77] S. J. Stewart, M. F. Garcı´a, C. Belver, B. S. Mun, F. G. Requejo, J. Phys. Chem. B, 110 (2006) 16482-16486
[78] Y. Hwu, Y. D. Yao, N. F. Cheng, C. Y. Tung, and H. M. Lin , Nanostructure Matemls, Vol. 9 (1997) 355-358
[79] H. C. Choi, H. J. Ahn, Y. M. Jung, M. K. Lee, H. J. Shin, S. B. Kim, Y.E. Sung, Appl. Spectrosc Vol 58 ( 2004) 5
[80] T. Ma, M. Akiyama, E. Abe, I. Imai, Nano Lett., vol. 5, 12 ,Dec (2005) 2543–2547
[81] D. A. Schmidt, S. A. Chambers, M. A. Olmstead, WA, Fundamental Science Division
[82] W. Göpel, U. Kirner, H.D. Wiemhöfer, G. Rocker, Solid State Ionics 28-30(1988)1423-1430
[83] M. Aizawa, Y. Morikawa, Y. Namai, H. Morikawa, Y. Iwasawa, J. Phys. Chem. B 109 (2005) 18831–18838
[84] J. Jun, J.-H. Shin, M. Dhayal, Appl. Surf. Sci. 252 (2006) 3871.
[85] X. Chen, C. Burda, J. Phys. Chem. B 108 (2004) 15446
[86] S. Guessasma, M. Bounazef, P. Nardin, and T. Sahraoui, Ceram. Int., vol. 32, 1(2006)13–19
[87] X. B. Chen, C. Burda , J. Phys. Chem. B, vol108,40(2004)15446-15449
[88] N. D. Shinn and K. L. Tsang J. Vac. Sci. Technol. A 8 (1990)2449
[89] M.C. Yang, T.S. Yang, M.S.Wong, Thin Solid Films 469–470 (2004) 1–5.
[90] A.O.T. Patrocinio, E.B. Paniago, R.M. Paniago, N.Y. M. Iha, Appl. Surf. Sci. 254 (2008) 1874-1879
[91] J. Pereira, I. G.Grenier, V. M.Guilbaud, A. Plain, V. Fernandez, Surf. Coat. Technol. 200 (2006) 6414–6419
[92] J. Robertson, Mat. Sci. Eng. R 37(2002)129-281