| 研究生: |
鍾孟穎 Chung, Meng-Yin |
|---|---|
| 論文名稱: |
含水釕氧化物與電紡絲奈米碳纖維複合膜應用於超級電容器電極材料之研究 Studies of Supercapacitor Electrode Based on Hydrous Ruthenium Oxide/Electrospun Carbon Nanofiber Composites |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 奈米碳纖維 、靜電紡絲技術 、無定型含水釕氧化物 、複合物 、超級電容 |
| 外文關鍵詞: | Carbon nanofiber, electrospinning, hydrous amorphous ruthenium oxide, composite, supercapacitor |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為將具有擬電容特性的釕氧化物結合碳材優良的導電特性,以提升複合材料之電容值及改善材料之穩定性。研究方法為以靜電紡絲法製備之奈米碳纖維作為基材,再將釕氧化物沉積於碳纖維表面,並於空氣氣氛下進行熱處理,形成複合纖維膜。研究第一部分為以溶膠-凝膠法製備複合纖維膜,在本法中添加不同離子型之界面活性劑;而第二部分中,我們以初濕含浸法針對碳纖維進行不同次數的含浸。在此兩部分研究中,我們分別探討不同界面活性劑和不同含浸次數對釕氧化物於碳纖維上的型態以及結構的影響,期望能了解複合纖維的結構和其電化學表現之間的關聯性。
在溶膠-凝膠法製備過程中,添加界面活性劑能有效提升釕氧化物附著於碳纖維上的含量,另外,透過在空氣氛圍下對釕氧化物及碳纖維複合膜進行熱處理會造成RuO2顆粒的燒結和結晶度提升,能使導電度增加並提升複合材料的電容表現。經300 ℃熱處理後,添加sodium dodecyl sulfate (SDS)所製備的樣品在纖維表面呈現RuO2皺狀結構,並具有較大之孔徑尺寸;添加N-dodecyl-N,N-dimethylammonium-1-propane-3-sulfonate (SB12)及cetyltrimethylammonium bromide (CTAB)之樣品,經由煅燒處理後,釕氧化物顆粒逐漸轉變為柱狀結構,且含結晶型釕氧化物增加,其中添加CTAB之樣品具有最高比例之結晶型RuO2。添加SDS所製備的複合膜,以三維連續的碳纖維作為導電支架,RuO2·xH2O具有皺紋狀結構及最適當的含水不定型與結晶型釕氧化物的比例,為電子和離子提供了快速擴散途徑,其於2 mV / s的掃描速率下具有547 F / g的最高比電容,而2000圈充放電之循環壽命顯示其電容滯留率為100.7 %。
研究第二部分以初濕含浸法經不同含浸次數製備複合纖維。透過此法能使釕氧化物均勻沉積並包覆於碳纖維表面,並能藉由改變含浸次數控制釕氧化物於纖維上之含量。在經過300 ℃熱處理後,隨著碳纖維上釕含量的增加,會使碳氧化的情形更加顯著,因而纖維直徑減小。此外,熱處理亦會些微提升結晶型釕氧化物的比例,使得電荷轉移阻力下降,能貢獻於更高的電容值。然而,當含浸次數為10次時,過高的結晶型態釕氧化物比例使得H+傳遞受阻,造成電容值下降。經由掃描速率2 mV/s下之循環伏安測試,含浸5次之複合纖維具有最高的比電容值544 F/g,此歸因於碳纖維上適當的釕氧化物含量,及熱處理後最有利於電化學反應之不定型與結晶型態釕氧化物比例,其於循環壽命測試經2000圈充放電後電容滯留率仍有97.7 %,顯示材料在經釕改質後仍能維持其穩定性。
The objective of this study is to synthesize composites composed of high capacitive RuO2·xH2O and high electrically-conductive carbon materials, and we aimed at understanding the correlation between the microstructure and electrochemical performance of these composite electrodes. In the sol-gel approach, adding surfactants in precursor solution facilitated the RuO2·xH2O particles attached on carbon nanofibers. When the composites were thermally treated in air atmosphere, RuO2·xH2O particles were slightly sintered and the crystallinity of RuO2 was increased, which resulted in an enhancement of electron transfer and capacitive performance of the composites. After annealing at 300 °C, the composite prepared by adding sodium dodecyl sulfate (SDS) yielded a wrinkle-like structure on the fiber surface. By contrast, the RuO2 particles of composites prepared by adding N-dodecyl-N,N-dimethylammonium-1-propane-3-sulfonate (SB-12) and cetyltrimethylammonium bromide (CTAB) gradually converted to rods after thermal treatment. Among these samples, the RuO2 particles prepared by using SDS delivered the highest specific capacitance of 547 F/g at a scan rate of 2 mV/s and favorable cycling stability with a retention ratio of nearly 100 % after 2000 cycles. This was attributed to the three-dimensional carbon nanofiber network as the conductive backbone, RuO2 with a wrinkle-like hierarchical structure, and an appropriate amount of hydrous amorphous RuO2 that provided the low diffusion resistance for electrons and protons. In the second part, the incipient wetness impregnation approach with various impregnation times was used to prepare composite fibers. It was obtained that hydrous ruthenium oxides were uniformly dispersed on carbon nanofibers. For the composite impregnated for 10 times, the high content of crystalline RuO2 increased the diffusion resistance for protons. By contrast, the composite impregnated for 5 times exhibited the highest specific capacitance of 544 F/g at a scan rate of 2 mV/s, which was attributed to the favorable content of RuO2 and suitable amount of hydrous RuO2. This composite exhibited a capacitance retention ratio of 97.7 % after the cycling test, suggesting the stability of the composite.
[1] T. Ondarcuhu and C. Joachim, "Drawing a single nanofibre over hundreds of microns," EPL (Europhysics Letters), 42, 215, 1998.
[2] P. X. Ma and R. Zhang, "Synthetic nano-scale fibrous extracellular matrix," 1999.
[3] J. Deitzel, J. Kleinmeyer, J. Hirvonen, and N. B. Tan, "Controlled deposition of electrospun poly (ethylene oxide) fibers," Polymer, 42, 8163-8170, 2001.
[4] C.-M. Chuang, C.-W. Huang, H. Teng, and J.-M. Ting, "Hydrothermally synthesized RuO2/Carbon nanofibers composites for use in high-rate supercapacitor electrodes," Composites Science and Technology, 72, 1524-1529, 2012.
[5] J. Cao, Y. Wang, Y. Zhou, J.-H. Ouyang, D. Jia, and L. Guo, "High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes," Journal of Electroanalytical Chemistry, 689, 201-206, 2013.
[6] E. M. Jin, J. G. Lim, and S. M. Jeong, "Facile synthesis of graphene-wrapped CNT-MnO2 nanocomposites for asymmetric electrochemical capacitors," Journal of Industrial and Engineering Chemistry, 54, 421-427, 2017.
[7] Y. Wang, Y. Song, and Y. Xia, "Electrochemical capacitors: mechanism, materials, systems, characterization and applications," Chem Soc Rev, 45, 5925-5950, 2016.
[8] Q. Wang, L. Jiao, H. Du, Y. Wang, and H. Yuan, "Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors," Journal of Power Sources, 245, 101-106, 2014.
[9] J. W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M. B. Sassin, and O. Crosnier, "Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes," MRS Bulletin, 36, 513-522, 2011.
[10] R. Niu and H. Yang, "Modeling and identification of electric double-layer supercapacitors," in Robotics and Automation (ICRA), 2011 IEEE International Conference on, 1-4,2011
[11] B. E. Conway, Electrochemical Supercapacitors:scientific fundamentals and technological applications. New York: Kluwer Academic Plenum 1999.
[12] M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, "Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review," Nanoscale, 5, 72-88, 2013.
[13] A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, and N. A. Osman, "Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors," Sensors (Basel), 14, 16343-422, 2014.
[14] X. Mao, T. A. Hatton, and G. C. Rutledge, "A review of electrospun carbon fibers as electrode materials for energy storage," Current Organic Chemistry, 17, 1390-1401, 2013.
[15] 蔡政男,陳國昭,林燈河,朱達勇,谷天心,徐植蔚,鄭宜男, 普通物理學(精華版): 歐亞書局有限公司, 2010.
[16] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors," Chem Soc Rev, 44, 7484-539, 2015.
[17] M. Lu, Supercapacitors: materials, systems and applications: John Wiley & Sons, 2013.
[18] G. Wang, L. Zhang, and J. Zhang, "A review of electrode materials for electrochemical supercapacitors," Chem Soc Rev, 41, 797-828, 2012.
[19] G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, "Hybrid nanostructured materials for high-performance electrochemical capacitors," Nano Energy, 2, 213-234, 2013.
[20] L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chem Soc Rev, 38, 2520-31, 2009.
[21] J. S. Mattson and H. B. Mark, Activated carbon: surface chemistry and adsorption from solution: M. Dekker, 1971.
[22] H. D. Abruña, Y. Kiya, and J. C. Henderson, "Batteries and electrochemical capacitors," Phys. Today, 61, 43-47, 2008.
[23] V. Meunier, J. Huang, G. Feng, R. Qiao, and B. G. Sumpter, "Modern Theories of Carbon-Based Electrochemical Capacitors: A Short Review," 21-30, 2010.
[24] X. Li and B. Wei, "Supercapacitors based on nanostructured carbon," Nano Energy, 2, 159-173, 2013.
[25] R. Lin, P. L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, and P. Simon, "Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors," Journal of The Electrochemical Society, 156, A7, 2009.
[26] C. O. Ania, J. Pernak, F. Stefaniak, E. Raymundo-Piñero, and F. Béguin, "Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors," Carbon, 47, 3158-3166, 2009.
[27] J. Huang, B. G. Sumpter, V. Meunier, G. Yushin, C. Portet, and Y. Gogotsi, "Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors," Journal of Materials Research, 25, 1525-1531, 2011.
[28] J. Huang, B. G. Sumpter, and V. Meunier, "A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes," Chemistry, 14, 6614-26, 2008.
[29] R. Li, L. Zhang, and P. Wang, "Rational design of nanomaterials for water treatment," Nanoscale, 7, 17167-94, 2015.
[30] F.-C. Wu, R.-L. Tseng, C.-C. Hu, and C.-C. Wang, "Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors," Journal of Power Sources, 138, 351-359, 2004.
[31] S. Biniak, A. Swiatkowski, M. Pakula, and L. Radovic, "Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces," Chemistry and physics of carbon, 125-226, 2001.
[32] C.-C. Hu, C.-C. Wang, F.-C. Wu, and R.-L. Tseng, "Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors," Electrochimica Acta, 52, 2498-2505, 2007.
[33] F.-C. Wu, R.-L. Tseng, C.-C. Hu, and C.-C. Wang, "Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors," Journal of Power Sources, 144, 302-309, 2005.
[34] J. Miller and B. Dunn, "Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures," Langmuir, 15, 799-806, 1999.
[35] J.-H. Kim, Y.-S. Lee, A. K. Sharma, and C. G. Liu, "Polypyrrole/carbon composite electrode for high-power electrochemical capacitors," Electrochimica Acta, 52, 1727-1732, 2006.
[36] H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, "Theoretical and experimental specific capacitance of polyaniline in sulfuric acid," Journal of Power Sources, 190, 578-586, 2009.
[37] M. S. Hong, S. H. Lee, and S. W. Kim, "Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor," Electrochemical and Solid-State Letters, 5, A227, 2002.
[38] J. Xu, L. Gao, J. Cao, W. Wang, and Z. Chen, "Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material," Electrochimica Acta, 56, 732-736, 2010.
[39] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature materials, 7, 845-854, 2008.
[40] A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of Power Sources, 157, 11-27, 2006.
[41] M. Vangari, T. Pryor, and L. Jiang, "Supercapacitors: Review of Materials and Fabrication Methods," Journal of Energy Engineering, 139, 72-79, 2013.
[42] R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica acta, 45, 2483-2498, 2000.
[43] J. Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers," Journal of electrostatics, 35, 151-160, 1995.
[44] D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, 7, 216, 1996.
[45] D.-R. Chen, D. Y. Pui, and S. L. Kaufman, "Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range," Journal of Aerosol Science, 26, 963-977, 1995.
[46] H. Zhuo, J. Hu, S. Chen, and L. Yeung, "Preparation of polyurethane nanofibers by electrospinning," Journal of Applied Polymer Science, 109, 406-411, 2008.
[47] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes," Polymer, 43, 4403-4412, 2002.
[48] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, "Processing and microstructural characterization of porous biocompatible protein polymer thin films," Polymer, 40, 7397-7407, 1999.
[49] M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, "A review of heat treatment on polyacrylonitrile fiber," Polymer Degradation and Stability, 92, 1421-1432, 2007.
[50] D. Zhu, C. Xu, N. Nakura, and M. Matsuo, "Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution," Carbon, 40, 363-373, 2002.
[51] F. Rodriguez-Reinoso and M. Molina-Sabio, "Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview," Carbon, 30, 1111-1118, 1992.
[52] L.-x. Li and F. Li, "The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes," New Carbon Materials, 26, 224-228, 2011.
[53] W. Li, M. Li, M. Wang, L. Zeng, and Y. Yu, "Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries," Nano Energy, 13, 693-701, 2015.
[54] J. Zheng, P. Cygan, and T. Jow, "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors," Journal of the Electrochemical Society, 142, 2699-2703, 1995.
[55] C. C. Hu, C. W. Wang, K. H. Chang, and M. G. Chen, "Anodic composite deposition of RuO2/reduced graphene oxide/carbon nanotube for advanced supercapacitors," Nanotechnology, 26, 274004, 2015.
[56] M. Rajkumar, C.-T. Hsu, T.-H. Wu, M.-G. Chen, and C.-C. Hu, "Advanced materials for aqueous supercapacitors in the asymmetric design," Progress in Natural Science: Materials International, 25, 527-544, 2015.
[57] 李弘傑, "以陽極、陰極與循環伏安法在RuCl3水溶液中沉積釕氧化物薄膜," 碩士論文, 化學工程與材料工程系, 國立高雄應用科技大學, 2006.
[58] C.-C. Hu, W.-C. Chen, and K.-H. Chang, "How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors," Journal of The Electrochemical Society, 151, A281, 2004.
[59] Z. R. Cormier, H. A. Andreas, and P. Zhang, "Temperature-Dependent Structure and Electrochemical Behavior of RuO2/Carbon Nanocomposites," The Journal of Physical Chemistry C, 115, 19117-19128, 2011.
[60] B.-O. Park, C. Lokhande, H.-S. Park, K.-D. Jung, and O.-S. Joo, "Electrodeposited ruthenium oxide (RuO2) films for electrochemical supercapacitors," Journal of materials science, 39, 4313-4317, 2004.
[61] D. Galizzioli, F. Tantardini, and S. Trasatti, "Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes," Journal of Applied Electrochemistry, 4, 57-67, 1974.
[62] C.-C. Hu and Y.-H. Huang, "Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors," Electrochimica acta, 46, 3431-3444, 2001.
[63] Y.-W. Ju, G.-R. Choi, H.-R. Jung, C. Kim, K.-S. Yang, and W.-J. Lee, "A Hydrous Ruthenium Oxide-Carbon Nanofibers Composite Electrodes Prepared by Electrospinning," Journal of The Electrochemical Society, 154, A192, 2007.
[64] V. Barranco, F. Pico, J. Ibañez, M. A. Lillo-Rodenas, A. Linares-Solano, M. Kimura, et al., "Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide," Electrochimica Acta, 54, 7452-7457, 2009.
[65] X. Leng, J. Zou, X. Xiong, and H. He, "Electrochemical capacitive behavior of RuO2/graphene composites prepared under various precipitation conditions," Journal of Alloys and Compounds, 653, 577-584, 2015.
[66] P. Simon, Y. Gogotsi, and B. Dunn, "Where do batteries end and supercapacitors begin?," Science, 343, 1210-1211, 2014.
[67] 趙立偉, "磺酸化聚苯乙烯摻混離子液體於質子交換膜式燃料電池之應用," 化學工程及材料工程學系, 國立高雄大學, 2010.
[68] D. A. Dornbusch, R. Hilton, M. J. Gordon, and G. J. Suppes, "Effects of Sonication on EIS Results for Zinc Alkaline Batteries," ECS Electrochemistry Letters, 2, A89-A92, 2013.
[69] C.-C. Lai, M.-Y. Chung, and C.-T. Lo, "Nitric acid oxidation of electrospun carbon nanofibers as supercapacitor electrodes," Textile Research Journal, 87, 2337-2348, 2016.
[70] K.-H. Chang, C.-C. Hu, and C.-Y. Chou, "Textural and Capacitive Characteristics of Hydrothermally Derived RuO2∙xH2O Nanocrystallites: Independent Control of Crystal Size and Water Content," Chemistry of materials, 19, 2112-2119, 2007.
[71] F. Pico, E. Morales, J. A. Fernandez, T. A. Centeno, J. Ibañez, R. M. Rojas, et al., "Ruthenium oxide/carbon composites with microporous or mesoporous carbon as support and prepared by two procedures. A comparative study as supercapacitor electrodes," Electrochimica Acta, 54, 2239-2245, 2009.
[72] T. P. Gujar, V. R. Shinde, C. D. Lokhande, W.-Y. Kim, K.-D. Jung, and O.-S. Joo, "Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor," Electrochemistry Communications, 9, 504-510, 2007.
[73] Z. Tan, H. Abe, M. Naito, and S. Ohara, "Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes," Chemical Communications, 46, 4363-4365, 2010.
[74] Y. Tsutsumi, T. Fujigaya, and N. Nakashima, "Polymer synthesis inside a nanospace of a surfactant–micelle on carbon nanotubes: creation of highly-stable individual nanotubes/ultrathin cross-linked polymer hybrids," RSC Advances, 4, 6318-6323, 2014.
[75] S. Ali, R. Ahmed, M. Sohail, S. A. Khan, and M. S. Ansari, "Co@ Pt core–shell nanoparticles supported on carbon nanotubes as promising catalyst for methanol electro-oxidation," Journal of Industrial and Engineering Chemistry, 28, 344-350, 2015.
[76] R. Vittal, H. Gomathi, and K.-J. Kim, "Beneficial role of surfactants in electrochemistry and in the modification of electrodes," Advances in colloid and interface science, 119, 55-68, 2006.
[77] K. Bhowmik, A. Chakravarty, S. Bysakh, and G. De, "γ-Alumina Nanorod/Reduced Graphene Oxide as Support for Poly(ethylenimine) to Capture Carbon Dioxide from Flue Gas," Energy Technology, 4, 1409-1419, 2016.
[78] C. Hui, X. Li, and I.-M. Hsing, "Well-dispersed surfactant-stabilized Pt/C nanocatalysts for fuel cell application: Dispersion control and surfactant removal," Electrochimica acta, 51, 711-719, 2005.
[79] R. Nagarajan, "Amphiphilic surfactants and amphiphilic polymers: principles of molecular assembly," in Amphiphiles: Molecular Assembly and Applications, ed: ACS Publications, 1-22, 2011
[80] I. L. Chen, Y.-C. Wei, T.-Y. Chen, C.-C. Hu, and T.-L. Lin, "Oxidative precipitation of ruthenium oxide for supercapacitors: Enhanced capacitive performances by adding cetyltrimethylammonium bromide," Journal of Power Sources, 268, 430-438, 2014.
[81] D. Harbaoui, M. M. S. Sanad, C. Rossignol, E. K. Hlil, N. Amdouni, and S. Obbade, "Synthesis and Structural, Electrical, and Magnetic Properties of New Iron-Aluminum Alluaudite Phases beta-Na2Ni2M(PO4)3 (M = Fe and Al)," Inorg Chem, 56, 13051-13061, 2017.
[82] J. B. Raoof, R. Ojani, and S. R. Hosseini, "Electrocatalytic oxidation of methanol onto platinum particles decorated nanostructured poly (1,5-diaminonaphthalene) film," Journal of Solid State Electrochemistry, 16, 2699-2708, 2012.
[83] M. B. Vázquez-Santos, E. Geissler, K. László, J.-N. Rouzaud, A. Martínez-Alonso, and J. M. D. Tascón, "Comparative XRD, Raman, and TEM Study on Graphitization of PBO-Derived Carbon Fibers," The Journal of Physical Chemistry C, 116, 257-268, 2011.
[84] Y. Wu, C. V. Bobba, and S. Ramakrishna, "Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems," Current Organic Chemistry, 17, 1411-1423, 2013.
[85] P. Su, L. Jiang, J. Zhao, J. Yan, C. Li, and Q. Yang, "Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers," Chem Commun (Camb), 48, 8769-71, 2012.
[86] C. Kim and K. S. Yang, "Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning," Applied Physics Letters, 83, 1216-1218, 2003.
[87] V. Ciupină, S. Zamfirescu, and G. Prodan, "Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images," Nanotechnology–Toxicological Issues and Environmental Safety and Environmental Safety, 231-237, 2007.
[88] H. Li, R. Wang, and R. Cao, "Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor," Microporous and Mesoporous Materials, 111, 32-38, 2008.
[89] C. Lin, J. A. Ritter, and B. N. Popov, "Development of Carbon‐Metal Oxide Supercapacitors from Sol‐Gel Derived Carbon‐Ruthenium Xerogels," Journal of the Electrochemical Society, 146, 3155-3160, 1999.
[90] M. S. Dresselhaus, A. Jorio, and R. Saito, "Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy," Annual Review of Condensed Matter Physics, 1, 89-108, 2010.
[91] A. G. Bannov, V. K. Varentsov, I. S. Chukanov, E. V. Gorodilova, and G. G. Kuvshinov, "Comparative analysis of methods of oxidative modification of carbon nanofibers," Protection of Metals and Physical Chemistry of Surfaces, 48, 199-206, 2012.
[92] Y. Yang, Y. Liang, Y. Zhang, Z. Zhang, Z. Li, and Z. Hu, "Three-dimensional graphene hydrogel supported ultrafine RuO2 nanoparticles for supercapacitor electrodes," New Journal of Chemistry, 39, 4035-4040, 2015.
[93] S. J. Lee, H. Lee, K. J. Jeon, H. Park, Y. K. Park, and S. C. Jung, "Characterization of Bimetallic Fe-Ru Oxide Nanoparticles Prepared by Liquid-Phase Plasma Method," Nanoscale Res Lett, 11, 344, 2016.
[94] P. Wang, H. Liu, Y. Xu, Y. Chen, J. Yang, and Q. Tan, "Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F g−1 for a supercapacitor," Electrochimica Acta, 194, 211-218, 2016.
[95] K.-H. Chang and C.-C. Hu, "Oxidative Synthesis of RuOx⋅nH2O with Ideal Capacitive Characteristics for Supercapacitors," Journal of The Electrochemical Society, 151, A958, 2004.
[96] G. Lota, J. Tyczkowski, R. Kapica, K. Lota, and E. Frackowiak, "Carbon materials modified by plasma treatment as electrodes for supercapacitors," Journal of Power Sources, 195, 7535-7539, 2010.
[97] W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, et al., "Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors," Sci Rep, 4, 4452, 2014.
[98] T. Shi, X. Wang, J. Deng, and Z. Wen, "The mechanism at the initial stage of the room-temperature oxidation of coal," Combustion and Flame, 140, 332-345, 2005.
[99] B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, et al., "What is the choice for supercapacitors: graphene or graphene oxide?," Energy & Environmental Science, 4, 2826, 2011.
[100] Z. Ryu, J. Zheng, M. Wang, and B. Zhang, "Characterization of pore size distributions on carbonaceous adsorbents by DFT," Carbon, 37, 1257-1264, 1999.
[101] W. Li, K. Yang, J. Peng, L. Zhang, S. Guo, and H. Xia, "Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars," Industrial Crops and Products, 28, 190-198, 2008.
[102] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, "Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer," Science, 313, 1760-3, 2006.
[103] H. Li, H. a. Xi, S. Zhu, Z. Wen, and R. Wang, "Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon," Microporous and Mesoporous Materials, 96, 357-362, 2006.
[104] J. Miller, B. Dunn, T. Tran, and R. Pekala, "Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes," Journal of the Electrochemical Society, 144, L309-L311, 1997.
[105] W.-C. Fang, J.-H. Huang, L.-C. Chen, Y.-L. O. Su, and K.-H. Chen, "Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides," Journal of Power Sources, 160, 1506-1510, 2006.
[106] T.-F. Hsieh, C.-C. Chuang, W.-J. Chen, J.-H. Huang, W.-T. Chen, and C.-M. Shu, "Hydrous ruthenium dioxide/multi-walled carbon-nanotube/titanium electrodes for supercapacitors," Carbon, 50, 1740-1747, 2012.
[107] G. Amaral-Labat, A. Szczurek, V. Fierro, N. Stein, C. Boulanger, A. Pizzi, et al., "Pore structure and electrochemical performances of tannin-based carbon cryogels," Biomass and Bioenergy, 39, 274-282, 2012.
[108] J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, and H. Fang, "Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor," Journal of The Electrochemical Society, 148, A1362, 2001.
[109] J. P. Zheng, "Ruthenium Oxide‐Carbon Composite Electrodes for Electrochemical Capacitors," Electrochemical and Solid-State Letters, 2, 359-361, 1999.
[110] M. Vujković, N. Gavrilov, I. Pašti, J. Krstić, J. Travas-Sejdic, G. Ćirić-Marjanović, et al., "Superior capacitive and electrocatalytic properties of carbonized nanostructured polyaniline upon a low-temperature hydrothermal treatment," Carbon, 64, 472-486, 2013.
[111] W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami, and Y. Takasu, "Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode," Electrochimica Acta, 49, 313-320, 2004.
[112] C.-W. Huang, C.-T. Hsieh, P.-L. Kuo, and H. Teng, "Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes," Journal of Materials Chemistry, 22, 7314, 2012.
[113] R. Vellacheri, V. K. Pillai, and S. Kurungot, "Hydrous RuO2-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage," Nanoscale, 4, 890-6, 2012.
[114] L. Zhang, C. M. B. Holt, E. J. Luber, B. C. Olsen, H. Wang, M. Danaie, et al., "High Rate Electrochemical Capacitors from Three-Dimensional Arrays of Vanadium Nitride Functionalized Carbon Nanotubes," The Journal of Physical Chemistry C, 115, 24381-24393, 2011.
[115] B. Fang and L. Binder, "Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor," Electrochimica Acta, 52, 6916-6921, 2007.
[116] X. Liu, J. Zhu, X. Wang, J. Sun, Z. Tang, T. Zhang, et al., "Capacitive Properties and Structure of RuO2-HfO2 Films Prepared by Thermal Decomposition Method," Physics Procedia, 50, 416-420, 2013.
[117] Y.-G. Guo, J.-S. Hu, and L.-J. Wan, "Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices," Advanced Materials, 20, 2878-2887, 2008.
[118] B.-H. Kim, C. H. Kim, and D. G. Lee, "Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors," Journal of Electroanalytical Chemistry, 760, 64-70, 2016.
[119] F. Pico, J. Ibañez, M. A. Lillo-Rodenas, A. Linares-Solano, R. M. Rojas, J. M. Amarilla, et al., "Understanding RuO2·xH2O/carbon nanofibre composites as supercapacitor electrodes," Journal of Power Sources, 176, 417-425, 2008.
[120] J. H. Jang, S. Han, T. Hyeon, and S. M. Oh, "Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes," Journal of Power Sources, 123, 79-85, 2003.
[121] K.-H. Chang and C.-C. Hu, "Coalescence inhibition of hydrous RuO2 crystallites prepared by a hydrothermal method," Applied Physics Letters, 88, 193102, 2006.
[122] Y. Lee, B. Kim, H. J. Jung, J. H. Shim, Y. Lee, C. Lee, et al., "Hierarchically grown single crystalline RuO2 nanorods on vertically aligned few-walled carbon nanotubes," Materials Letters, 89, 115-117, 2012.
[123] X. Jing, Z. Li, Y. Zhang, and L. Chang, "Changes of oxygen-containing groups during thermal treatment and their influences on moisture readsorption of lignite," Drying Technology, 34, 729-739, 2015.
[124] C.-C. Lai and C.-T. Lo, "Plasma oxidation of electrospun carbon nanofibers as supercapacitor electrodes," RSC Advances, 5, 38868-38872, 2015.
[125] P. Deshmukh, S. Pusawale, R. Bulakhe, and C. Lokhande, "Supercapacitive performance of hydrous ruthenium oxide (RuO2·nH2O) thin films synthesized by chemical route at low temperature," Bulletin of Materials Science, 36, 1171-1176, 2013.
[126] V. Ozolins, F. Zhou, and M. Asta, "Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations," Accounts of chemical research, 46, 1084-1093, 2013.
[127] D. Ghosh, M. Mandal, and C. K. Das, "Solid State Flexible Asymmetric Supercapacitor Based on Carbon Fiber Supported Hierarchical Co(OH)xCO3 and Ni(OH)2," Langmuir, 31, 7835-43, 2015.
[128] R.-R. Bi, X.-L. Wu, F.-F. Cao, L.-Y. Jiang, Y.-G. Guo, and L.-J. Wan, "Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance," The Journal of Physical Chemistry C, 114, 2448-2451, 2010.
校內:2023-08-28公開