| 研究生: |
蔡旻辰 Tsai, Min-Chen |
|---|---|
| 論文名稱: |
接面結構對於高壓金氧半場效電晶體特性與可靠度影響之研究 Effects of Junction Structure on Characteristics and Reliability in High Voltage MOSFETs |
| 指導教授: |
陳志方
Chen, Jone-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 高壓金氧半場效電晶體 、截止態崩潰電壓 、熱載子可靠度 、電腦輔助設計 |
| 外文關鍵詞: | HV-MOSFETs, off-state breakdown voltage, hot-carrier reliability, technology computer aided design |
| 相關次數: | 點閱:83 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中, 我們將使用不同佈局參數的高壓金氧半場效電晶體(HV-MOSFETs),討論其不同接面結構對於元件的特性與熱載子可靠度所造成的影響。重要的佈局參數W、L、Lgd與Ovl分別為閘極寬度、閘極長度、飄移區的長度與閘極至薄氧化層之間的長度。
首先,會先闡明本篇論文的研究動機,並簡單介紹高壓元件在業界的應用與優勢。由於元件經常操作在高壓的環境下,對於熱載子可靠度與崩潰機制已成為重要的議題,因此將闡明熱載子效應與元件崩潰的基本原理。為了能夠更深入了解元件內部的物理機制,將使用電腦輔助設計(TCAD)軟體來進行模擬分析與討論。
第二部分將介紹本篇論文研究的元件結構、元件內部區域的定義與量測偏壓的設定,之後透過基本電性的量測,包含線性電流IDlin-Vg、飽和電流IDsat-Vg、截止態崩潰電壓VBD與基板電流Isub-VG,並觀察不同佈局參數對於元件特性的影響。
第三部分將討論不同加速測試與佈局參數對元件退化的影響,我們使用三種固定的汲極電壓VD與閘極電壓VG對應最大Isub值時進行熱載子加速測試,實驗結果也顯示不同接面結構的元件在退化程度上相似,隨著給定VD增加而使退化增大。隨著加速測試的進行,會使得介面缺陷增加,進而使元件內部電位產生變化,讓電場重新分佈,導致離子碰撞率的下降、電流密度下降等等,並產生退化飽和的現象。除此之外,介面缺陷的增加同時也會使得克爾克效應(Kirk effect)的增強。
第四部分將討論不同接面結構的元件的截止態崩潰電壓與熱載子生命週期的變化。實驗結果顯示漸進接面比傳統接面具有更好的截止態崩潰電壓(VBD),隨著Ovl增加而增大,在經過熱載子加速測試後VBD也有明顯的增加,而熱載子生命週期則是在不同接面結構下具有相似的結果。
In this study, we will use high voltage metal-oxide-semiconductor field-effect transistor (HV-MOSFETs) with different layout parameters to discuss the effects of different junction structures on the characteristics and hot carrier reliability of the devices. The important layout parameters W, L, Lgd, and Ovl represent the gate width, gate length, length of the drift region, and the distance between the gate and the thin oxide layer, respectively.
First, the motivation for this paper will be clarified, and the applications and advantages of high-voltage devices in the industry will be briefly introduced. As devices often operate in high-voltage environments, hot carrier reliability and breakdown mechanisms have become important issue, so the basic principles of hot carrier effects and device breakdown will be explained. In order to gain a deeper understanding of physical mechanisms inside the device, technology computer-aided design (TCAD) will be used for simulation analysis and discussion.
The second part will introduce the device structure studied in this paper, the definition of internal region of the device, and the setting of bias voltages for measurements. Then, basic electrical measurements, including the linear current (IDlin-VG), saturation current (IDsat-VG), off-state breakdown voltage (VBD), and substrate current (Isub-VG), will be performed to observe the effects of different layout parameters on the device characteristics.
The third section will discuss the effects of different acceleration tests and layout parameters on device degradation. We conducted hot carrier acceleration tests using three fixed VD and corresponding VG that resulted in maximum Isub values. The experimental results showed that devices with different interface structures exhibited similar degrees of degradation, which increased as VD increased. As the acceleration test progresses, interface defects increase, causing changes in the internal potential of the device, redistributing the electric field, decreasing the impact ionization rate, and reducing the current density. These changes lead to saturation of degradation. In addition, the increase in interface defects also increases the Kirk effect.
The fourth section will discuss the variation in breakdown voltage (VBD) in the off-state and the lifetime of hot carriers for devices with different interface structures. The experimental results demonstrate that progressive interfaces exhibit better breakdown voltage than traditional interfaces, with an increase in VBD as Ovl increases. After undergoing hot carrier acceleration testing, there is a noticeable increase in VBD. However, the hot carrier lifetime shows similar results for different interface structures.
[1] Tan, Y., Kumar, M., Sin, J. K. O., Cai, J., & Lau, J. A LDMOS technology compatible with CMOS and passive components for integrated RF power amplifiers. IEEE Electron Device Letters, 21(2), 2000.
[2] Bianchi, R. A., Monsieur, F., Blanchet, F., Raynaud, C., & Noblanc, O. High voltage devices integration into advanced CMOS technologies. Technical Digest - International Electron Devices Meeting, IEDM, 2008.
[3] Jeong, H. M., Kwon, H. C., Xu, B., Jung, D., Han, M., Kwon, D. H., & Kang, S. W. Taste sensor based on the floating gate structure of a lateral double-diffused metal-oxide semiconductor. Sensors and Actuators, B: Chemical, 308, 2020.
[4] Holland, P., & Igic, P. A p+/p-buffer/n-epi cmos compatible high-side RESURF LDMOS transistor for Power IC applications. Microelectronics Journal, 38(6–7), 2007.
[5] Devoge, P., Aziza, H., Lorenzini, P., Masson, P., Julien, F., Marzaki, A., Malherbe, A., Delalleau, J., Cabout, T., Regnier, A., & Niel, S. Hot-carrier reliability and performance study of transistors with variable gate-to-drain/source overlap. Microelectronics Reliability, 138, 2022.
[6] Tsai, Y. L., Chen, J. F., Shen, S. F., Hsu, H. T., Kao, C. Y., Chang, K. F., & Hwang, H. P. Investigation of characteristics and hot-carrier reliability of high-voltage MOS transistors with various doping concentrations in the drift region. Semiconductor Science and Technology, 33(12), 2018.
[7] Tian, K. S., Chen, J. F., Chen, S. Y., Wu, K. M., Lee, J. R., Huang, T. Y., Liu, C. M., & Hsu, S. L. An investigation on hot-carrier reliability and degradation index in lateral diffused metal-oxide-semiconductor field-effect transistors. Japanese Journal of Applied Physics, 47(4 PART 2), 2008.
[8] Yan, C. R., Chen, J. F., Lin, C. Y., Hsu, H. T., Liao, Y. J., Yang, M. T., Chen, C. Y., Lin, Y. C., & Chen, H. H. Characteristics of lateral diffused metal-oxide-semiconductor transistors with lightly doped drain implantation through gradual screen oxide. Japanese Journal of Applied Physics, 52(4 PART 2), 2013.
[9] Chen, J. F., Ai, T. J., Tsai, Y. L., Hsu, H. T., Chen, C. Y., & Hwang, H. P. Analysis of high-voltage metal-oxide-semiconductor transistors with gradual junction in the drift region. Japanese Journal of Applied Physics, 55(8S2), 2016.
[10] Valtonen, R., Olsson, J., & de Wolf, P. Channel length extraction for DMOS transistors using capacitance-voltage measurements. IEEE Transactions on Electron Devices, 48(7), 2001.
[11] Dai, C. T., & Ker, M. D. Optimization of Guard Ring Structures to Improve Latch up Immunity in an 18 v DDDMOS Process. IEEE Transactions on Electron Devices, 63(6), 2016.
[12] Tsai, Y. L., Chen, J. F., Shen, S. F., Hsu, H. T., Kao, C. Y., Chang, K. F., & Hwang, H. P. Investigation of characteristics and hot-carrier reliability of high-voltage MOS transistors with various doping concentrations in the drift region. Semiconductor Science and Technology, 33(12), 2018.
[13] Ogura, S., Tsang, P. J., Walker, W. W., Critchlow, D. L., & Shepard, J. F. Design and Characteristics of the Lightly Doped Drain-Source (LDD) Insulated Gate Field effect Transistor. IEEE Journal of Solid-State Circuits, 15(4), 1980.
[14] HOUADEF, A., & DJEZZAR, B. Evaluation of Hot Carrier Impact on Lateral-DMOS with LOCOS feature. Algerian Journal of Signals and Systems, 6(1), 2021.
[15] Chen, J. F., Tian, K. S., Chen, S. Y., Wu, K. M., & Liu, C. M. On-resistance degradation induced by hot-carrier injection in LDMOS transistors with STI in the drift region. IEEE Electron Device Letters, 29(9), 2008.
[16] Chen, J. H., Wong, S. C., & Wang, Y. H. An analytic three-terminal band-to-band tunneling model on GIDL in MOSFET. IEEE Transactions on Electron Devices, 48(7), 2001.
[17] Chan, T. Y., Chen, J., Ko, P. K., & Hu, C. IMPACT OF GATE-INDUCED DRAIN LEAKAGE CURRENT ON MOSFET SCALING. Technical Digest - International Electron Devices Meeting, 1987.
[18] Chang, C., Haddad, S., Swaminathan, B., & Lien, J. Drain-Avalanche and Hole-Trapping Induced Gate Leakage in Thin-Oxide MOS Devices. IEEE Electron Device Letters, 9(11), 1988.
[19] Owczarek, A. K. Potential and Carrier Concentration Distributions in MOS Transistors at Punch‐Through. Physica Status Solidi (a), 54(2), 1979.
[20] Chen, M. L., Leung, C. W., Cochran, W. T., Jüngling, W., Dziuba, C., & Yang, T. Suppression of Hot-Carrier Effects in Submicrometer CMOS Technology. IEEE Transactions on Electron Devices, 35(12), 1988.
[21] Chen, J. F., Tian, K. S., Chen, S. Y., Wu, K. M., Shih, J. R., & Wu, K. Mechanisms of hot-carrier-induced threshold-voltage shift in high-voltage p-type LDMOS transistors. IEEE Transactions on Electron Devices, 56(12), 2009.
[22] Chen, Z., Wong, H., Han, Y., Dong, S., & Yang, B. L. Temperature dependences of threshold voltage and drain-induced barrier lowering in 60 nm gate length MOS transistors. Microelectronics Reliability, 54(6–7), 2014.
[23] Lu, L., Lin, F., Ma, S., Yin, Z., Sang, Y., Sun, W., Liu, S., & Su, W. Hot-Carrier-Induced Reliability for Lateral DMOS Transistors with Split-STI Structures. IEEE Journal of the Electron Devices Society, 9, 2021.
[24] Lee, W., & Hwang, H. Hot carrier reliability characteristics of a bend-gate MOSFET. Solid-State Electronics, 44(6), 2000.
[25] Chen, S. Y., Chen, J. F., Lee, J. R., Wu, K. M. K. M., Liu, C. M., & Hsu, S. L. Anomalous hot-carrier-induced increase in saturation-region drain current in n-type lateral diffused metal-oxide-semiconductor transistors. IEEE Transactions on Electron Devices, 55(5), 2008.
[26] Sasse, G. T., Claes, J. A. M., & de Vries, B. An LDMOS hot carrier model for circuit reliability simulation. IEEE International Reliability Physics Symposium Proceedings, 2014.
[27] Hu, C., Tam, S. C., Hsu, F. C., Ko, P. K., Chan, T. Y., & Terrill, K. W. Hot-Electron-Induced MOSFET Degradation—Model, Monitor, and Improvement. IEEE Transactions on Electron Devices, 32(2), 1985.
[28] Zhang, C., Li, Y., Li, Z., Fu, X., & Chen, Z. An Improved Hot-Carrier Lifetime Evaluation Method for the n-Type LDMOS with Hot-Hole Injection. IEEE Transactions on Electron Devices, 65(8), 2018.
[29] Chen, J. F., Tian, K. S., Chen, S. Y., Lee, J. R., Wu, K. M., & Liu, C. M. Mechanism and lifetime prediction method for hot-carrier-induced degradation in lateral diffused metal-oxide-semiconductor transistors. Applied Physics Letters, 92(24), 2008.
[30] Silvaco, Int. "ATLAS user’s manual." Santa Clara, CA, Ver 5, 2011.
[31] I.I. Shvetsov-Shilovskiy, et al. Measurement system for test memory cells based on keysight B1500A semiconductor device analyzer running LabVIEW software 2017 International Siberian Conference on Control and Communications (SIBCON), 2017.
[32] Chan, T. Y., Ko, P. K., & Hu, C. Dependence of Channel Electric Field on Device Scaling. IEEE Electron Device Letters, 6(10), 1985.
[33] Chen, J. F., & Feng, Y. S. Breakdown voltage walkout resulting from hot-carrier-induced interface states in n-type LDMOS transistors. Electronics Letters, 52(17), 2016.
[34] Liu, S., Sun, W., Wan, W., Qian, Q., & Huang, T. Hot-carrier degradation mechanism for p-type symmetric LDMOS transistor with thick gate oxide. Electronics Letters, 48(24), 2012.
[35] Chen, J. F., Lee, J. R., Wu, K. M., Huang, T. Y., Liu, C. M., & Hsu, S. L. OFF-state avalanche-breakdown-induced ON-resistance degradation in lateral DMOS transistors. IEEE Electron Device Letters, 28(11), 2007.
[36] Kashif, A., Johansson, T., Svensson, C., Azam, S., Arnborg, T., & Wahab, Q. Influence of interface state charges on RF performance of LDMOS transistor. Solid-State Electronics, 52(7), 2008.
[37] Wang, J., Li, R., Dong, Y., Zou, X., Shao, L., & Shiau, W. T. Substrate current characterization and optimization of high voltage LDMOS transistors. Solid-State Electronics, 52(6), 2008.
[38] Sun, Z., Sun, W., & Shi, L. Modeling Kirk effect of RESURF LDMOS. Solid-State Electronics, 49(12), 2005.
[39] Xia, K., McAndrew, C. C., & van Langevelde, R. Parameter Extraction for the PSPHV LDMOS Transistor Model. IEEE Journal of the Electron Devices Society, 8, 2020.
[40] Ludikhuize, A. W. Kirk effect limitations in high voltage IC’s. IEEE International Symposium on Power Semiconductor Devices & ICs, 1994.